3 resultados para Ash layer


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new Icelandic ash layer has been detected in mid-Interstadial sediments in a number of Scottish Lateglacial sequences and has been named the Penifiler Tephra. It is rhyolitic in composition and possesses a chemistry, which is similar to the Borrobol Tephra of early Lateglacial Interstadial age, which also occurs in a number of these same sequences. Where the Borrobol Tephra has been identified in these sequences it consistently exhibits a diffuse distribution accompanied in some cases by stratigraphic bimodality. A number of sedimentological and taphonomic factors are considered in order to account for this distribution. One possibility is that these distributions are produced by taphonomic factors. Another possibility is that the Borrobol Tephra may not be the product of a single Icelandic eruption, but of two events closely spaced in time. In at least two of the sequences investigated in this study, basaltic shards were found in association with the Penifiler and Borrobol tephras, suggesting either a basaltic phase associated with these eruptions, or coincident eruptions from a separate basaltic volcanic centre. The discovery of the new Penifiler Tephra makes a contribution to the regional tephrostratigraphic framework, and provides an additional isochron for assessing the synchroneity of palaeoenvironmental changes during the Interstadial. The true stratigraphic nature and age of the Borrobol Tephra, however, remains unresolved and, therefore, its use as an isochron is more problematic. The possible occurrence of basaltic populations may strengthen correlations with basaltic tephras recently detected in the NGRIP ice-core.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extensive micro-tephrostratigraphic survey of three small lakes in the Scottish Inner Hebrides was conducted encompassing the Last Glacial–Interglacial Transition (LGIT). The lakes are highly contrasting in terms of lake area to catchment ratio, the presence or absence of stream inlets draining the catchment, and in the complexity of the catchment drainage network. A suite of distal Icelandic volcanic ashes was consistently detected in all three lakes, with three, namely Penifiler Tephra, Vedde Ash and Ashik Tephra, being common to all the lakes. These ashes were chosen to examine the taphonomic intercomparability of ash location and concentration among the lakes. Findings reveal that the part played by catchment inlets in determining ash concentration and within-basin location applies to microtephra layers as much as it does in studies of macrotephra layer thickness. The position of ash concentration maxima is also shown to vary significantly for different LGIT periods and may be a consequence of lake-level changes, especially during the early Holocene. High-resolution stratigraphic analysis through the Vedde Ash visible macrotephra at Loch Ashik reveals a high degree of complexity in taphonomic behaviour between the different geochemical components, with possible implications for the correct interpretation of the isochron position. The detection of multiple intact ash isochrons and the taphonomic processes responsible for their deposition should prove useful in future tephrostratigraphic surveys, as well as having applications within other palaeolimnological disciplines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cryptotephras (tephra not visible to the naked eye) form the foundation of the tephrostratigraphic frameworks used in Europe to date and correlate widely distributed geologic, paleoenvironmental and archaeological records. Pyne-O'Donnell et al. (2012) established the potential for developing a similar crypto-tephrostratigraphy across eastern North America by identifying multiple tephra, including the White River Ash (east; WRAe), St. Helens We and East Lake, in a peat core located in Newfoundland. Following on from this work, several ongoing projects have examined additional peat cores from Michigan, New York State, Maine, Nova Scotia and Newfoundland to build a tephrostratigraphic framework for this region. Using the precedent set by recent research by Jensen et al.(in press) that correlated the Alaskan WRAe to the European cryptotephra AD860B, unknown tephras identified in this work were not necessarily assumed to be from "expected" source areas (e.g. the Cascades). Here we present several examples of the preservation of tephra layers with an intercontinental distribution (i.e. WRAe and Ksudach 1), from relatively small magnitude events (i.e. St. Helens layer T, Mono Crater), and the first example of a Mexican ash in the NE (Volcan Ceboruco, Jala pumice). There are several implications of the identification of these units. These far-travelled ashes: (1) highlight the need to consider "ultra" distal source volcanoes for unknown cryptotephra deposits,. (2) present an opportunity for physical volcanologists to examine why some eruptions have an exceptional distribution of ash that is not necessarily controlled by the magnitude of the event. (3) complicate the idea of using tephrostratigraphic frameworks to understand the frequency of eruptions towards aiding hazard planning and prediction (e.g. Swindles et al., 2011). (4) show that there is a real potential to link tropical and mid to high-latitude paleoenvironmental records. Jensen et al. (in press) Transatlantic correlation of the Alaskan White River Ash. Geology. Pyne-O'Donnell et al. (2012). High-precision ultra-distal Holocene tephrochronology in North America. Quaternary Science Reviews, 52, 6-11. Swindles et al. (2011). A 7000 yr perspective on volcanic ash clouds affecting northern Europe. Geology, 39, 887-890.