98 resultados para Artificial intelligence -- Computer programs
Resumo:
Editorial for 17th AICS Conference
Resumo:
This study explores using artificial neural networks to predict the rheological and mechanical properties of underwater concrete (UWC) mixtures and to evaluate the sensitivity of such properties to variations in mixture ingredients. Artificial neural networks (ANN) mimic the structure and operation of biological neurons and have the unique ability of self-learning, mapping, and functional approximation. Details of the development of the proposed neural network model, its architecture, training, and validation are presented in this study. A database incorporating 175 UWC mixtures from nine different studies was developed to train and test the ANN model. The data are arranged in a patterned format. Each pattern contains an input vector that includes quantity values of the mixture variables influencing the behavior of UWC mixtures (that is, cement, silica fume, fly ash, slag, water, coarse and fine aggregates, and chemical admixtures) and a corresponding output vector that includes the rheological or mechanical property to be modeled. Results show that the ANN model thus developed is not only capable of accurately predicting the slump, slump-flow, washout resistance, and compressive strength of underwater concrete mixtures used in the training process, but it can also effectively predict the aforementioned properties for new mixtures designed within the practical range of the input parameters used in the training process with an absolute error of 4.6, 10.6, 10.6, and 4.4%, respectively.
Resumo:
Traditional static analysis fails to auto-parallelize programs with a complex control and data flow. Furthermore, thread-level parallelism in such programs is often restricted to pipeline parallelism, which can be hard to discover by a programmer. In this paper we propose a tool that, based on profiling information, helps the programmer to discover parallelism. The programmer hand-picks the code transformations from among the proposed candidates which are then applied by automatic code transformation techniques.
This paper contributes to the literature by presenting a profiling tool for discovering thread-level parallelism. We track dependencies at the whole-data structure level rather than at the element level or byte level in order to limit the profiling overhead. We perform a thorough analysis of the needs and costs of this technique. Furthermore, we present and validate the belief that programs with complex control and data flow contain significant amounts of exploitable coarse-grain pipeline parallelism in the program’s outer loops. This observation validates our approach to whole-data structure dependencies. As state-of-the-art compilers focus on loops iterating over data structure members, this observation also explains why our approach finds coarse-grain pipeline parallelism in cases that have remained out of reach for state-of-the-art compilers. In cases where traditional compilation techniques do find parallelism, our approach allows to discover higher degrees of parallelism, allowing a 40% speedup over traditional compilation techniques. Moreover, we demonstrate real speedups on multiple hardware platforms.
Resumo:
This work presents a novel approach for human action recognition based on the combination of computer vision techniques and common-sense knowledge and reasoning capabilities. The emphasis of this work is on how common sense has to be leveraged to a vision-based human action recognition so that nonsensical errors can be amended at the understanding stage. The proposed framework is to be deployed in a realistic environment in which humans behave rationally, that is, motivated by an aim or a reason. © 2012 Springer-Verlag.
Resumo:
FastFlow is a structured parallel programming framework targeting shared memory multi-core architectures. In this paper we introduce a FastFlow extension aimed at supporting also a network of multi-core workstations. The extension supports the execution of FastFlow programs by coordinating-in a structured way-the fine grain parallel activities running on a single workstation. We discuss the design and the implementation of this extension presenting preliminary experimental results validating it on state-of-the-art networked multi-core nodes. © 2013 Springer-Verlag.
Resumo:
The use of efficient synchronization mechanisms is crucial for implementing fine grained parallel programs on modern shared cache multi-core architectures. In this paper we study this problem by considering Single-Producer/Single- Consumer (SPSC) coordination using unbounded queues. A novel unbounded SPSC algorithm capable of reducing the row synchronization latency and speeding up Producer-Consumer coordination is presented. The algorithm has been extensively tested on a shared-cache multi-core platform and a sketch proof of correctness is presented. The queues proposed have been used as basic building blocks to implement the FastFlow parallel framework, which has been demonstrated to offer very good performance for fine-grain parallel applications. © 2012 Springer-Verlag.
Resumo:
Multi-core and many-core platforms are becoming increasingly heterogeneous and asymmetric. This significantly increases the porting and tuning effort required for parallel codes, which in turn often leads to a growing gap between peak machine power and actual application performance. In this work a first step toward the automated optimization of high level skeleton-based parallel code is discussed. The paper presents an abstract annotation model for skeleton programs aimed at formally describing suitable mapping of parallel activities on a high-level platform representation. The derived mapping and scheduling strategies are used to generate optimized run-time code. © 2013 Springer-Verlag Berlin Heidelberg.