34 resultados para Arousal (Physiology)
Resumo:
Control of ocular blood flow occurs predominantly at the level of the retinal and choroidal arterioles. The present article provides an overview of the Ca2 + handling mechanisms and plasmalemmal ion channels involved in the regulation of retinal and choroidal arteriolar smooth muscle tone. Increases in global intracellular free Ca2 + ([Ca2 +]i) involve multiple mechanisms, including agonist-dependent release of Ca2 + from intracellular stores through activation of the inositol trisphosphate (IP3) pathway. Ca2 + enters by voltage-dependent L-type Ca2 + channels and novel dihydropyridine-sensitive store-operated nonselective cation channels. Ca2 + extrusion is mediated by plasmalemmal Ca2 +-ATPases and through Na+/Ca2+ exchange. Local Ca2 + transients (Ca2 + sparks) play an important excitatory role, acting as the building blocks for more global Ca2 + signals that can initiate vasoconstriction. K+ and Cl- channels may also affect cell function by modulating membrane potential. The precise contribution of each of these mechanisms to the regulation of retinal and choroidal perfusion in vivo warrants future investigation.
Resumo:
We tested the hypothesis that voltage-operated Ca2+ channels mediate an extracellular Ca2+ influx in muscle fibres from the human parasite Schistosoma mansoni and, along with Ca2+ mobilization from the sarcoplasmic reticulum, contribute to Muscle contraction. Indeed, whole-cell voltage clamp revealed voltage-gated inward currents carried by divalent ions with a peak current elicited by steps to + 20 mV (from a holding potential of -70 mV). Depolarization of the fibres by elevated extracellular K+ elicited contractions that were completely dependent on extracellular Ca2+ and inhibited by nicardipine (half inhibition at 4(.)1 mu M). However these contractions were not very sensitive to other classical blockers of voltage-gated Ca2+ channels, indicating that the schistosome Muscle channels have an atypical pharmacology when compared to their mammalian counterparts. Furthermore, the contraction induced by 5 mM caffeine was inhibited after depletion of the sarcoplasmic reticulum either with thapsigargin (10 mu M) or ryanodine (10 mu M). These data suggest that voltage-operated Ca2+ channels docontribute to S. mansoni contraction as does the mobilization of stored Ca2+, despite the small volume of sarcoplasmic reticulum in schistosome smooth muscles.
Resumo:
P>The current paper provides an overview of current knowledge on the structure and function of the eye. It describes in depth the different parts of the eye that are involved in the ocular manifestations seen in the mucopolysaccharidoses (MPS). The MPS are a group of rare inheritable lysosomal storage disorders characterized by the accumulation of glycosaminoglycans (GAGs) in cells and tissues all over the body, leading to widespread tissue and organ dysfunction. GAGs also tend to accumulate in several tissues of the eye, leading to various ocular manifestations affecting both the anterior (cornea, conjunctiva) and the posterior parts (retina, sclera, optic nerve) of the eye.
Resumo:
FMRFamide-like peptides (FLPs) are a diverse group of neuropeptides that are expressed abundantly in nematodes. They exert potent physiological effects on locomotory, feeding and reproductive musculature and also act as neuromodulators. However, little is known about the specific expression patterns and functions of individual peptides. The current study employed rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR) to characterize flp genes from infective juveniles of the root knot nematodes, Meloidogyne incognita and Meloidogyne minor. The peptides identified from these transcripts are sequelogs of FLPs from the free-living nematode, Caenorhabditis elegans; the genes have therefore been designated as Mi-flp-1, Mi-flp-7, Mi-flp-12, Mm-flp-12 and Mi-flp-14. Mi-flp-1 encodes five FLPs with the common C-terminal moiety, NFLRFamide. Mi-flp-7 encodes two copies of APLDRSALVRFamide and APLDRAAMVRFamide and one copy of APFDRSSMVRFamide. Mi-flp-12 and Mm-flp-12 encode the novel peptide KNNKFEFIRFamide (a longer version of RNKFEFIRFamide found in C. elegans). Mi-flp-14 encodes a single copy of KHEYLRFamide (commonly known as AF2 and regarded as the most abundant nematode FLP), and a single copy of the novel peptide KHEFVRFamide. These FLPs share a high degree of conservation between Meloidogyne species and nematodes from other clades, including those of humans and animals, perhaps suggesting a common neurophysiological role which may be exploited by novel drugs. FLP immunoreactivity was observed for the first time in Meloidogyne, in the circumpharyngeal nerve ring, pharyngeal nerves and ventral nerve cord. Additionally, in situ hybridization revealed Mi-flp-12 expression in an RIR-like neuron and Mi-flp-14 expression in SMB-like neurons, respectively. These localizations imply physiological roles for FLP-12 and FLP-14 peptides, including locomotion and sensory perception.