22 resultados para Aragonite (integrated peak area)
Resumo:
BACKGROUND:
The protein components of GCF can be separated by reverse-phase microbore HPLC on a C18 column with detection on the basis of 214 nm absorbance. A single major symmetrical protein peak eluting with a retention time of 26 min (50% acetonitrile) was evident in gingival crevicular fluid (GCF) from periodontitis patients but not in healthy GCF. This protein was identified as human MRP-8 by N-terminal amino acid sequencing and liquid chromatography quadropole mass spectrometry.
AIMS:
To quantify the amount of MRP-8 detectable in GCF from individual healthy, gingivitis and periodontitis affected sites and to study the relationship, if any, between the levels of this responsive protein and periodontal health and disease.
METHODS:
GCF was sampled (30 s) from healthy, gingivitis, and periodontitis sites in peridontitis subjects (n=15) and from controls (n=5) with clinically healthy gingiva and no periodontitis. Purified MRP-8 was sequenced by Edmann degradation and the phenylthiohydantoin (PTH) amino acid yield determined (by comparison of peak area with external PTH amino acid standards). This value was subsequently used to calculate the relative amount of protein in the peak eluting with a retention time of 26.0 min (MRP-8) in individual GCF chromatograms.
RESULTS:
Higher levels of MRP-8 were detected in inflammatory sites: periodontitis 457.0 (281.0) ng; gingivitis 413.5 (394.5) ng compared with periodontally healthy sites in diseased subjects 14.6 (14.3) ng and in controls 18.6 (18.5) ng, p=0.003. There was at least 20-fold more MRP-8 in the inflammatory compared with the healthy sites studied.
CONCLUSIONS:
The preliminary data indicate that MRP-8 is present in GCF, with significantly greater amounts present at diseased than healthy sites. A systematic study of the relationship of this protein to periodontal disease could prove useful in further clarifying whether MRP-8 could be a reliable GCF biomarker of gingivitis and periodontitis.
Resumo:
Capillary electrophoresis (CE) of erythrocytes from different sources under various conditions is reported in this paper. It was found that erythrocyte samples from sheep, duck, and human showed characteristic and reproducible elution peaks, and that the retention times of A-, B-, AB-, and O-type erythrocytes from human blood were distinctively different; even subtle differences, among individuals with the same blood type could be detected by CE. A strictly linear correlation was obtained between the peak area and the amount of human erythrocyte over a range of 4.8×102–1.9×104 cells (r=0.999), indicating that CE could be used for rapid and accurate quantification of erythrocytes. Using this CE protocol, the decrease of the surface electrical charge of erythrocyte during storage was confirmed. Therefore, this work demonstrated that CE could be a useful alternative for characterizing and quantifying erythrocytes or other cells.
Resumo:
A rapid, sensitive reversed-phase high-performance liquid chromatographic method has been developed for the determination of in vitro release of 17 beta-estradiol and its ester prodrug, 17 beta-estradiol-3-acetate, from silicone intravaginal rings. Partial hydrolysis of the acetate under the aqueous conditions provided by the 1% benzalkonium chloride release medium necessitates its conversion to 17 beta-estradiol prior to HPLC analysis. Both steroid peaks have been fully resolved from the benzalkonium chloride peaks by the reported chromatographic method,which employs a C-18 bonded reversed-phase column, an acetonitrile-water (50:50, v/v) mobile phase and a UV detection wavelength of 281 nm. The peak area versus 17 beta-estradiol concentration was found to be linear over the range of 0.0137-1347 mu g ml(-1) The HPLC method has also been used to determine the silicone solubilities and diffusion coefficients of the two related steroids. The almost 100-fold increase in 17 beta-estradiol-3-acetate release from the silicone core-type intravaginal rings compared to 17 beta-estradiol is shown to be due to a 60-fold increase in silicone solubility and a one and a half-fold increase in diffusitivity. The results demonstrate that an effective estrogen replacement therapy dose of 17 beta-estradiol may be administered from a silicone intravaginal reservoir device containing the labile 17 beta-estradiol-3-acetate prodrug. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The incorporation of carboxyl functionalised multi-walled carbon nanotube (MWCNT-COOH) into a leading proprietary grade orthopaedic bone cement (Simplex PTM) at 0.1 wt% has been investigated. Resultant static and fatigue mechanical properties, in addition to thermal and polymerisation properties, have been determined. Significant improvements (p 0.001) in bending strength (42%), bending modulus (55%) and fracture toughness (22%) were demonstrated. Fatigue properties were improved (p 0.001), with mean number of cycles to failure and fatigue performance index being increased by 64% and 52%, respectively. Thermal necrosis index values at 44C and 55C were significantly reduced (p 0.001) (28% and 27%) versus the control. Furthermore, the onset of polymerisation increased by 58% (p < 0.001), as did the duration of the polymerisation reaction (52%). Peak energy during polymerisation increased by 672% (p < 0.001). Peak area of polymerisation increased by 116% (p < 0.001) indicating that the incorporation of MWCNT-COOH reduced the rate of polymerisation significantly. A non-significant reduction (8%) in percentage monomer conversion was also recorded. Raman spectroscopy clearly showed that the addition of MWCNT-COOH increased the ratio between normalised intensities of the G-Band and D-Band (IG/ID), and also increased the theoretical compressive strain (1.72%) exerted on the MWCNT-COOH by the Simplex PTM cement matrix. Therefore, demonstrating a level of chemical interactivity between the MWCNT-COOH and the Simplex PTM bone cement exists and consequently a more effective mechanism for successful transfer of mechanical load. The extent of homogenous dispersion of the MWCNT-COOH throughout the bone cement was determined using Raman mapping. Ke
Resumo:
Variation of the bypass nozzle exit area enables optimization of the turbofan engine operating cycle over a wider range of operational conditions resulting in improved thrust and/or fuel consumption. Two mechanisms for varying the nozzle area have been investigated. The first uses an array of chevrons which when closed, form a full body of revolution and when warped/curved, increase the exit area while forming a serrated trailing edge. The second technique incorporates an axially translating section of the nacelle shroud and uses the change in the nozzle boat-tail radial location with the axial location as a means to vary the nozzle exit area. To analyse the effects on a typical rotor/stator stage, computational fluid dynamics simulations of the NASA Rotor 67, Stator 67A stage integrated into a custom-built nacelle were performed. Nozzles with 8, 12, and 16 chevrons were simulated to evaluate the impact of the variation in geometry upon the nacelle wake and local forces. Gross thrust of the nacelle and the turbulent kinetic energy (TKE) variation through the wake is compared. The chevron nozzle attains a nearly 2 per cent maximum thrust improvement over the translating nozzle technique. The chevron nozzle also has significantly lower (nearly 8 per cent) peak TKE levels in the jet plume.
Resumo:
Novel V-band substrate integrated waveguide (SIW) filters have been presented. Design procedures for the filters synthesis and mechanisms providing quasi-elliptic response have been explained. The insertion loss of the filters has been measured below 2 dB with microstrip-to-SIW transitions being included.
Resumo:
This paper presents a preliminary study of developing a novel distributed adaptive real-time learning framework for wide area monitoring of power systems integrated with distributed generations using synchrophasor technology. The framework comprises distributed agents (synchrophasors) for autonomous local condition monitoring and fault detection, and a central unit for generating global view for situation awareness and decision making. Key technologies that can be integrated into this hierarchical distributed learning scheme are discussed to enable real-time information extraction and knowledge discovery for decision making, without explicitly accumulating and storing all raw data by the central unit. Based on this, the configuration of a wide area monitoring system of power systems using synchrophasor technology, and the functionalities for locally installed open-phasor-measurement-units (OpenPMUs) and a central unit are presented. Initial results on anti-islanding protection using the proposed approach are given to illustrate the effectiveness.
Resumo:
In this theoretical paper, the analysis of the effect that ON-state active-device resistance has on the performance of a Class-E tuned power amplifier using a shunt inductor topology is presented. The work is focused on the relatively unexplored area of design facilitation of Class-E tuned amplifiers where intrinsically low-output-capacitance monolithic microwave integrated circuit switching devices such as pseudomorphic high electron mobility transistors are used. In the paper, the switching voltage and current waveforms in the presence of ON-resistance are analyzed in order to provide insight into circuit properties such as RF output power, drain efficiency, and power-output capability. For a given amplifier specification, a design procedure is illustrated whereby it is possible to compute optimal circuit component values which account for prescribed switch resistance loss. Furthermore, insight into how ON-resistance affects transistor selection in terms of peak switch voltage and current requirements is described. Finally, a design example is given in order to validate the theoretical analysis against numerical simulation.
Resumo:
Closed-form design equations for the operation of a class-E amplifier for zero switch voltage slope and arbitrary duty cycle are derived. This approach allows an additional degree of freedom in the design of class-E amplifiers which are normally designed for 50 duty ratio. The analysis developed permits the selection of non-unique solutions where amplifier efficiency is theoretically 100 but power output capability is less than that the 50 duty ratio case would permit. To facilitate comparison between 50 (optimal) and non-50 (suboptimal) duty ratio cases, each important amplifier parameter is normalised to its corresponding optimum operation value. It is shown that by choosing a non-50 suboptimal solution, the operating frequency of a class-E amplifier can be extended. In addition, it is shown that by operating the amplifier in the suboptimal regime, other amplifier parameters, for example, transistor output capacitance or peak switch voltage, can be included along with the standard specification criteria of output power, DC supply voltage and operating frequency as additional input design specifications. Suboptimum class-E operation may have potential advantages for monolithic microwave integrated circuit realisation as lower inductance values (lower series resistance, higher self-resonance frequency, less area) may be required when compared with the results obtained for optimal class-E amplifier synthesis. The theoretical analysis conducted here was verified by harmonic balance simulation, with excellent agreement between both methods. © The Institution of Engineering and Technology 2007.
Resumo:
A combined antennas and propagation study has been undertaken with a view to directly improving link conditions for wireless body area networks. Using tissue-equivalent numerical and experimental phantoms representative of muscle tissue at 2.45 GHz, we show that the node to node [S-21] path gain performance of a new wearable integrated antenna (WIA) is up to 9 dB better than a conventional compact Printed-F antenna, both of which are suitable for integration with wireless node circuitry. Overall, the WIA performed extremely well with a measured radiation efficiency of 38% and an impedance bandwidth of 24%. Further benefits were also obtained using spatial diversity, with the WIA providing up to 7.7 dB of diversity gain for maximal ratio combining. The results also show that correlation was lower for a multipath environment leading to higher diversity gain. Furthermore, a diversity implementation with the new antenna gave up to 18 dB better performance in terms of mean power level and there was a significant improvement in level crossing rates and average fade durations when moving from a single-branch to a two-branch diversity system.
Resumo:
Magnetic bright points (MBPs) are among the smallest observable objects on the solar photosphere. A combination of G-band observations and numerical simulations is used to determine their area distribution. An automatic detection algorithm, employing one-dimensional intensity profiling, is utilized to identify these structures in the observed and simulated data sets. Both distributions peak at an area of approximate to 45,000 km(2), with a sharp decrease toward smaller areas. The distributions conform with log-normal statistics, which suggests that flux fragmentation dominates over flux convergence. Radiative magneto-convection simulations indicate an independence in the MBP area distribution for differing magnetic flux densities. The most commonly occurring bright point size corresponds to the typical width of inter-granular lanes.