31 resultados para Apple Mosaic Ilarvirus
Resumo:
A 1-year-old child with clinical features of monosomy 14 is reported. She has dysmorphic facial features including ocular colobomata, dolichocephaly and microcephaly, retinal pigmentation, severe seizures, fair curly hair and tapering fingers. There was severe mental retardation. This is the first reported case of severe mosaic monosomy 14, with up to 30% mosaicism. A recognizable facial gestalt is present in children with 14q deletions or partial monosomy 14, as well as susceptibility to infection, feeding difficulties, seizures and retinal pigmentation. (C) 2004 Lippincott Williams Wilkins.
Resumo:
Background: Pea encodes eukaryotic translation initiation factor eIF4E (eIF4E(S)), which supports the multiplication of Pea seed-borne mosaic virus (PSbMV). In common with hosts for other potyviruses, some pea lines contain a recessive allele (sbm1) encoding a mutant eIF4E (eIF4E(R)) that fails to interact functionally with the PSbMV avirulence protein, VPg, giving genetic resistance to infection.
Resumo:
An 8-year-old girl with some features of Turner syndrome and karyotype 45X/46XY had developed a bilateral gonadoblastoma in her rudimentary ovaries. Her normal Y chromosome showed the characteristic distal fluorescence, as seen in her father's. Another mosaic, this time 45X/46XidicY, and also with some Turner features had rudimentary ovaries, but no gonadoblastoma had developed at age 14. The nature of her idicY, which showed no fluorescent distal Yq and had one of the centromeres inactivated, was confirmed by in situ hybridisation with a Yp-specific probe. Using primers from a human Yp-specific sequence, we amplified DNA extracted from paraffin-embedded ovarian tissue from both cases, and from a normal testicle and a normal ovary as controls. The finding of the expected Y-derived PCR product in the rudimentary gonads from these mosaic patients indicates the presence of their Y chromosome in both. We discuss the validity of the findings, and the possible role of sequences in or near the fluorescent part of Yq in the origin of gonadoblastoma in Y-bearing mosaic Turner syndrome.
Resumo:
Adult sex ratio (ASR) has critical effects on behavior and life history and has implications for population demography, including the invasiveness of introduced species. ASR exhibits immense variation in nature, yet the scale dependence of this variation is rarely analyzed. In this study, using the generalized multilevel models, we investigated the variation in ASR across multiple nested spatial scales and analyzed the underlying causes for an invasive species, the golden apple snail Pomacea canaliculata. We partitioned the variance in ASR to describe the variations at different scales and then included the explanatory variables at the individual and group levels to analyze the potential causes driving the variation in ASR. We firstly determined there is a significant female-biased ASR for this species when accounting for the spatial and temporal autocorrelations of sampling. We found that, counter to nearly equal distributed variation at plot, habitat and region levels, ASR showed little variation at the town level. Temperature and precipitation at the region level were significantly positively associated with ASR, whereas the individual weight, the density characteristic, and sampling time were not significant factors influencing ASR. Our study suggests that offspring sex ratio of this species may shape the general pattern of ASR in the population level while the environmental variables at the region level translate the unbiased offspring sex ratio to the female-biased ASR. Future research should consider the implications of climate warming on the female-biased ASR of this invasive species and thus on invasion pattern.
Resumo:
Models and software products have been developed for modelling, simulation and prediction of different correlations in materials science, including 1. the correlation between processing parameters and properties in titanium alloys and ?-titanium aluminides; 2. time–temperature–transformation (TTT) diagrams for titanium alloys; 3. corrosion resistance of titanium alloys; 4. surface hardness and microhardness profile of nitrocarburised layers; 5. fatigue stress life (S–N) diagrams for Ti–6Al–4V alloys. The programs are based on trained artificial neural networks. For each particular case appropriate combination of inputs and outputs is chosen. Very good performances of the models are achieved. Graphical user interfaces (GUI) are created for easy use of the models. In addition interactive text versions are developed. The models designed are combined and integrated in software package that is built up on a modular fashion. The software products are available in versions for different platforms including Windows 95/98/2000/NT, UNIX and Apple Macintosh. Description of the software products is given, to demonstrate that they are convenient and powerful tools for practical applications in solving various problems in materials science. Examples for optimisation of the alloy compositions, processing parameters and working conditions are illustrated. An option for use of the software in materials selection procedure is described.
Resumo:
Natural landscape boundaries between vegetation communities are dynamically influenced by the selective grazing of herbivores. Here we show how this may be an emergent property of very simple animal decisions, without the need for any sophisticated choice rules etc., using a model based on biased diffusion. Animal grazing intensity is coupled with plant competition, resulting in reaction-diffusion dynamics, from which stable boundaries spontaneously emerge. In the model, animals affect their resources by both consumption and trampling. It is assumed that forage consists of two heterogeneously distributed competing resource species, one that is preferred (grass) over the other (heather) by the animals. The solutions to the resulting system of differential equations for three cases a) optimal foraging, b) random walk foraging and c) taxis-diffusion are presented. Optimal and random foraging gave unrealistic results, but taxis-diffusion accorded well with field observations. Persistent boundaries between patches of near-monoculture vegetation were predicted, with these boundaries drifting in response to overall grazing pressure (grass advancing with increased grazing and vice versa). The reaction-taxis-diffusion model provides the first mathematical explanation for such vegetation mosaic dynamics and the parameters of the model are open to experimental testing.
Resumo:
Fine-resolution palaeoecological and dendrochronological methods were used to investigate the impacts of climate change, and natural and anthropogenic disturbances on vegetation in the North Patagonian rainforest of southern Chile at decadal to century timescales during the late Holocene. A lake sediment mud–water interface core was collected from the northern Chonos Archipelago and analysed for pollen and charcoal. Dendrochronological analysis of tree cores collected from stands of Pilgerodendron uviferum close to the lake site was incorporated into the study. The combined analysis showed that the present mosaic of vegetation types in this region is a function of environmental changes across a range of timescales: millennial climate change, more recent natural and anthropogenic disturbances, and possibly short-term climatic variations. Of particular interest is the spatiotemporal distribution of Pilgerodendron uviferum dieback/burning in the Chonos Archipelago region.
Resumo:
A pollen-based study from Tiny Lake in the Seymour-Belize Inlet Complex of central coastal British Columbia, Canada, permits an evaluation of the dynamic response of coastal temperate rainforests to postglacial climate change. Open Pinus parklands grew at the site during the early Lateglacial when the climate was cool and dry, but more humid conditions in the later phases of the Lateglacial permitted mesophytic conifers to colonise the region. Early Holocene conditions were warmer than present and a successional mosaic of Tsuga heterophylla and Alnus occurred at Tiny Lake. Climate cooling and moistening at 8740?±?70 14C a BP initiated the development of closed, late successional T. heterophylla–Cupressaceae forests, which achieved modern character after 6860?±?50 14C a BP, when a temperate and very wet climate became established. The onset of early Holocene climate cooling and moistening at Tiny Lake may have preceded change at more southern locations, including within the Seymour-Belize Inlet Complex, on a meso- to synoptic scale. This would suggest that an early Holocene intensification of the Aleutian Low pressure system was an important influence on forest dynamics in the Seymour-Belize Inlet Complex and that the study region was located near the southern extent of immediate influence of this semi-permanent air mass.
Resumo:
The antibacterial activities of 18 naturally occurring compounds (including essential oils and some of their isolated constituents, apple and green tea polyphenols, and other plant extracts) against three strains of Mycobacterium avium subsp. paratuberculosis (a bovine isolate [NCTC 8578], a raw-milk isolate [806R], and a human isolate [ATCC 43015]) were evaluated using a macrobroth susceptibility testing method. M. avium subsp. paratuberculosis was grown in 4 ml Middlebrook 7H9 broth containing 10% oleic acid-albumin-dextrose-catalase, 0.05% Tween 80 (or 0.2% glycerol), and 2 µg/ml mycobactin J supplemented with five concentrations of each test compound. The changes in the optical densities of the cultures at 600 nm as a measure of CFU were recorded at intervals over an incubation period of 42 days at 37°C. Six of the compounds were found to inhibit the growth of M. avium subsp. paratuberculosis. The most effective compound was trans-cinnamaldehyde, with a MIC of 25.9 µg/ml, followed by cinnamon oil (26.2 µg/ml), oregano oil (68.2 µg/ml), carvacrol (72.2 µg/ml), 2,5-dihydroxybenzaldehyde (74 µg/ml), and 2-hydroxy-5-methoxybenzaldehyde (90.4 µg/ml). With the exception of carvacrol, a phenolic compound, three of the four most active compounds are aldehydes, suggesting that the structure of the phenolic group or the aldehyde group may be important to the antibacterial activity. No difference in compound activity was observed between the three M. avium subsp. paratuberculosis strains studied. Possible mechanisms of the antimicrobial effects are discussed.