3 resultados para Antifungal activity
Resumo:
Background: Candida albicans is a commensal organism and a constituent of the normal oral flora. Cell concentrations of 1x102 cells/ml and below are indicative of commensal colonisation in the oral cavity, above this level C. albicans can become an opportunistic pathogen; it is the most prevalent human fungal pathogen and a causal agent of the oral infection, candidiasis. The capacity of C. albicans to cause infection arises from its ability to exist in a biofilm ecosystem. Mature C. albicans biofilms display a high level of resistance to antifungals and the need for other therapeutic options has become paramount. Objectives: The objectives of the current study were to determine the antifungal activity of LL-37 (a member of the human cathelicidin family) and two truncated peptide mimetics against C. albicans in both planktonic and biofilm form. Methods: Radial diffusion assays were used to obtain the minimum inhibitory concentration (MIC) of LL-37 and the truncated mimetics KE-18 and KR-12 against planktonic C. albicans. A 96 well microtitre plate assay was employed to study the effects of the peptides on early candida biofilm formation (up to 24 hours) compared with the antifungal drug fluconazole. Biofilm quantification was achieved using the crystal violet assay. Results: MIC values obtained: LL-37 >250µg/ml; KE-18 51µg/ml; and KR-12 11µg/ml. LL-37 significantly reduced the quantity of biofilm formed by C.albicans at both the 4 h and 24 h timepoints (p <0.0001). KE-18 showed significant biofilm reduction over 4 h and 24 h (p=0.0002, p=0.013 respectively), KR-12 showed significant reduction at the 24 h time point only (p=0.0256). Conclusions: Results suggest that LL-37 has the ability to disrupt early biofilm formation of C. albicans with its potency of action similar with that of fluconazole.
Resumo:
Background: Candidal species, particularly Candida albicans are common pathogens in the oral cavity and perioral region. Many of the manifestations of candidiasis are associated with the formation of Candida biofilms on host surfaces and/or implanted biomaterials. Biofilms are clinically important due to their increased resistance to therapeutic intervention and the ability of cells within the biofilm to withstand host immune defences.
Objectives: The present study was designed to investigate the antifungal activity of two peptides found in skin secretions of the African volcano frog (Xenopus amieti) against the type strain of C. albicans NCTC 3179.
Methods: The antifungal activity of magainin-AM1 and peptide glycine-leucine-amide (PGLa-AM1) against C. albicans NCTC 3179 was studied in both planktonic and biofilm forms. Radial diffusion assays were used to obtain the minimum inhibitory concentration (MIC) of magainin-AM1 and PGLa-AM1 against planktonic C. albicans. Time kill assays were used to determine the time dependent fungicidal action of the peptides at both 4oC and 37oC. A 96 well microtitre plate model for candidal biofilm formation was employed to study the ability of the peptides to disrupt the early biofilm development (up to 24 hours) compared with the antifungal drug fluconazole. Biofilm formation was determined quantitatively using the crystal violet assay.
Results: Both magainin-AM1 and PGLa-AM1 demonstrated inhibitory activity against Candida albicans, with MIC values of 24.3 uM and 7.5uM respectively. Time-kill assays revealed bactericidal activity of both peptides at 37oC and 4oC. Magainin-AM1 and PGLa-AM1 inhibited biofilm formation in microtitre plate assays. The peptides were particularly effective during early biofilm establishment when compared with fluconazole treatment.
Conclusions: Magainin-AM1 and PGLa-AM1 are active against C albicans in both planktonic and biofilm forms. Further testing of this peptide family against candidal biofilms is recommended.
Resumo:
A novel lysozyme exhibiting antifungal activity and with a molecular mass of 14.4 kDa in SDS–polyacrylamide gel electrophoresis was isolated from mung bean (Phaseolus mungo) seeds using a procedure that involved aqueous extraction, ammonium sulfate precipitation, ion exchange chromatography on CM-Sephadex, and high-performance liquid chromatography on POROS HS-20. Its N-terminal sequence was very different from that of hen egg white lysozyme. Its pI was estimated to be above 9.7. The specific activity of the lysozyme was 355 U/mg at pH 5.5 and 30 °C. The lysozyme exhibited a pH optimum at pH 5.5 and a temperature optimum at 55 °C. It is reported herein, for the first time, that a novel plant lysozyme exerted an antifungal action toward Fusarium oxysporum, Fusarium solani, Pythium aphanidermatum, Sclerotium rolfsii, and Botrytis cinerea, in addition to an antibacterial action against Staphylococcus aureus.