14 resultados para Antarctic Ice Sheet
Resumo:
To ascertain the response of the southern Greenland Ice Sheet (GIS) to a boreal summer climate warmer than at present, we explored whether southern Greenland was deglaciated during the Last Interglacial (LIG), using the Sr-Nd-Pb isotope ratios of silt-sized sediment discharged from southern Greenland. Our isotope data indicate that no single southern Greenland geologic terrane was completely deglaciated during the LIG, similar to the Holocene. Differences in sediment sources during the LIG relative to the early Holocene denote, however, greater southern GIS retreat during the LIG. These results allow the evaluation of a suite of GIS models and are consistent with a GIS contribution of 1.6 to 2.2 meters to the =4-meter LIG sea-level highstand, requiring a significant sea-level contribution from the Antarctic Ice Sheet.
Resumo:
Tofua Island is the largest emergent mafic volcano within the Tofua arc, Tonga, southwest Pacific. The volcano is dominated by a distinctive caldera averaging 4 km in diameter, containing a freshwater lake in the south and east. The latest paroxysmal (VEI 5-6) explosive volcanism includes two phases of activity, each emplacing a high-grade ignimbrite. The products are basaltic andesites with between 52 wt.% and 57 wt.% SiO(2). The first and largest eruption caused the inward collapse of a stratovolcano and produced the 'Tofua' ignimbrite and a sub-circular caldera located slightly northwest of the island's centre. This ignimbrite was deposited in a radial fashion over the entire island, with associated Plinian fall deposits up to 0.5 m thick on islands > 40 km away. Common sub-rounded and frequently cauliform scoria bombs throughout the ignimbrite attest to a small degree of marginal magma-water interaction. The common intense welding of the coarse-grained eruptive products, however, suggests that the majority of the erupted magma was hot, water-undersaturated and supplied at high rates with moderately low fragmentation efficiency and low levels of interaction with external water. We propose that the development of a water-saturated dacite body at shallow (<6 km) depth resulted in failure of the chamber roof to cause sudden evacuation of material, producing a Plinian eruption column. Following a brief period of quiescence, largescale faulting in the southeast of the island produced a second explosive phase believed to result from recharge of a chemically distinct magma depleted in incompatible elements. This similar, but smaller eruption, emplaced the 'Hokula' Ignimbrite sheet in the northeast of the island. A maximum total volume of 8 km(3) of juvenile material was erupted by these events. The main eruption column is estimated to have reached a height of similar to 12 km, and to have produced a major atmospheric injection of gas, and tephra recorded in the widespread series of fall deposits found on coral islands 40-80 km to the east (in the direction of regional upper-tropospheric winds). Radiocarbon dating of charcoal below the Tofua ignimbrite and organic material below the related fall units imply this eruption sequence occurred post 1,000 years BP. We estimate an eruption magnitude of 2.24x10(13) kg, sulphur release of 12 Tg and tentatively assign this eruption to the AD 1030 volcanic sulphate spike recorded in Antarctic ice sheet records.
Resumo:
The Northern Hemisphere cooling event 8200 years ago is believed to represent the last known major freshwater pulse into the North Atlantic as a result of the final collapse of the North American Laurentide ice sheet. This pulse of water is generally believed to have occurred independently of orbital variations and provides an analogue for predicted increases in high-latitude precipitation and ice melt as a result of anthropogenically driven future climate change. The precise timing, duration and magnitude of this event, however, are uncertain, with suggestions that the 100-yr meltwater cooling formed part of a longer-term cold period in the early Holocene. Here we undertook a multiproxy, high-resolution investigation of a peat sequence at Dooagh, Achill Island, on the west coast of Ireland, to determine whether the 8200-year cold event impacted upon the terrestrial vegetation immediately downwind of the proposed changes in the North Atlantic. We find clear evidence for an oscillation in the early Holocene using various measures of pollen, indicating a disruption in the vegetation leading to a grassland-dominated landscape, most probably driven by changes in precipitation rather than temperature. Radiocarbon dating was extremely problematic, however, with bulk peat samples systematically too young for the North Atlantic event, suggesting significant contamination from downward root penetration. The sustained disruption to vegetation over hundreds of years at Dooagh indicates the landscape was impacted by a long-term cooling event in the early Holocene, and not the single century length 8200-year meltwater event proposed in many other records in the North Atlantic region.
Resumo:
We present a database of late-Quaternary plant macrofossil records for northern Eurasia (from 23 degrees to 180 degrees E and 46 degrees to 76 degrees N) comprising 281 localities, over 2300 samples and over 13,000 individual records. Samples are individually radiocarbon dated or are assigned ages via age models fitted to sequences of calibrated radiocarbon dates within a section. Tree species characteristic of modern northern forests (e.g. Picea, Larix, tree-Betula) are recorded at least intermittently from prior to the last glacial maximum (LGM), through the LGM and Lateglacial, to the Holocene, and some records locate trees close to the limits of the Scandinavian ice sheet, supporting the hypothesis that some taxa persisted in northern refugia during the last glacial cycle. Northern trees show differing spatio-temporal patterns across Siberia: deciduous trees were widespread in the Lateglacial, with individuals occurring across much of their contemporary ranges, while evergreen conifers expanded northwards to their range limits in the Holocene. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Owing to proximity of the North Atlantic Stream and the shelf, the And circle divide ya biota are assumed to have responded rapidly to climatic changes taking place after the Weichselian glaciation. Palynological, macrofossil, loss-on-ignition, tephra and C-14 data from three sites at the northern part of the island of And circle divide ya were studied. The period 12 300-11 950 cal. yr BP was characterized by polar desert vegetation, and 11 950-11 050 cal. yr BP by a moisture-demanding predominantly low-arctic Oxyria vegetation. During the period 11 050-10 650 cal. yr BP, there was a climatic amelioration towards a sub-arctic climate and heaths dominated by Empetrum. After 10 650 cal. yr BP the Oxyria vegetation disappeared. As early as about 10 800 cal. yr BP the bryozoan Cristatella mucedo indicated a climate sufficient for Betula woodland. However, tree birch did not establish until 10 420-10 250 cal. yr BP, indicating a time-lag for the formation of Betula ecotypes adapted to the oceanic climate of And circle divide ya. From about 10 150 to 9400 cal. yr BP the summers were dry and warm. There was a change towards moister, though comparatively warm, climatic conditions about 9400 cal. yr BP. The present data are compared with evidence from marine sediments and the deglaciation history in the region. It is suggested that during most of the period 11 500-10 250 cal. yr BP a similar situation as in present southern Greenland existed, with birch woodland in the inner fjords near the ice sheet and low-arctic heath vegetation along the outer coast.
Resumo:
Seismic refraction and electrical resistivity geophysical techniques were used to reconstruct the internal architecture of a drumlin in Co. Down, Northern Ireland. Geophysical results were both validated and complemented by borehole drilling, ground water flow modelling, and geologic mapping. The geophysical anatomy of the drumlin consists of five successive layers with depth including; topsoil, partially saturated and saturated glacial tills, and weathered and more competent greywacke bedrock. There are numerous, often extensive inclusions of clay, sand, gravel, cobbles, and boulders within the topsoil and the till units. Together geophysical and geotechnical findings imply that the drumlin is part of the subglacial lodgement, melt-out, debris flow, sheet flow facies described by previous authors, and formed by re-sedimentation and streamlining of pre-existing sediments during deglaciation of the Late Devensian ice sheet. Seismic refraction imaging is particularly well suited to delineating layering within the drumlin, and is able to reconstruct depths to interfaces to within ± 0.5 m accuracy. Refraction imaging ascertained that the weathered bedrock layer is continuous and of substantial thickness, so that it acts as a basal aquifer which underdrains the bulk of the drumlin. Electrical resistivity imaging was found to be capable of delineating relative spatial changes in the moisture content of the till units, as well as mapping sedimentary inclusions within the till. The moisture content appeared to be elevated near the margins of the drumlin, which may infer a weakening of the drumlin slopes. Our findings advocate the use of seismic refraction and electrical resistivity methods in future sedimentological and geotechnical studies of internal drumlin architecture and drumlin formation, owing particularly to the superior, 3- D spatial coverage of these methods.
Resumo:
The vegetation history of the Faroe Islands has been investigated in numerous studies all broadly showing that the early-Holocene vegetation of the islands largely consisted of fellfield with gravely and rocky soils formed under a continental climate which shifted to an oceanic climate around 10,000 cal yr BP when grasses, sedges and finally shrubs began to dominant the islands. Here we present data from three lake sediment cores and show a much more detailed history from geochemical and isotope data. These data show that the Faroe Islands were deglaciated by the end of Younger Dryas (11,700 10,300 cal yr BP), at this time relatively high sedimentation rates with high delta C-13 imply poor soil development. delta C-13, Ti and chi data reveal a much more stable and warm mid-Holocene until 7410 cal yr BP characterised by increasing vegetation cover and build up of organic soils towards the Holocene thermal maximum around 7400 cal yr BP. The final meltdown of the Laurentide ice sheet around 7000 cal yr BP appears to have impacted both ocean and atmospheric circulation towards colder conditions on the Faroe Islands. This is inferred by enhanced weathering and increased deposition of surplus sulphur (sea spray) and erosion in the highland lakes from about 7400 cal yr BP. From 4190 cal yr BP further cooling is believed to have occurred as a consequence for increased soil erosion due to freeze/thaw sequences related to oceanic and atmospheric variability. This cooling trend appears to have advanced further from 3000 cal yr BR A short period around 1800 cal yr BP appears as a short warm and wet phase in between a general cooling characterised by significant soil erosion lasting until 725 cal yr BP. Interestingly, increased soil erosion seems to have begun at 1360 cal yr BP, thus significantly before the arrival of the first settlers on the Faroe Island around 1150 cal yr BP, although additional erosion took place around 1200 cal yr BP possibly as a consequence of human activities. Hence it appears that if humans caused a change in the Faroe landscape in terms of erosion they in fact accelerated a process that had already started. Soil erosion was a dominant landscape factor during the Little Ice Age, but climate related triggers can hardly be distinguished from human activities. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
It is commonly believed that trees were absent in Scandinavia during the last glaciation and first recolonized the Scandinavian Peninsula with the retreat of its ice sheet some 9000 years ago. Here, we show the presence of a rare mitochondrial DNA haplotype of spruce that appears unique to Scandinavia and with its highest frequency to the west—an area believed to sustain ice-free refugia during most of the last ice age. We further show the survival of DNA from this haplotype in lake sediments and pollen of Trøndelag in central Norway dating back ~10,300 years and chloroplast DNA of pine and spruce in lake sediments adjacent to the ice-free Andøya refugium in northwestern Norway as early as ~22,000 and 17,700 years ago, respectively. Our findings imply that conifer trees survived in ice-free refugia of Scandinavia during the last glaciation, challenging current views on survival and spread of trees as a response to climate changes.
Resumo:
The distribution of glacial cirques upon the Kamchatka peninsula, Far Eastern Russia, is systematically mapped from satellite images and digital elevation model data. A total of 3,758 cirques are identified, 238 of which are occupied by active glaciers. The morphometry of the remaining 3,520 cirques is analysed. These cirques are found to show a very strong N bias in their azimuth (orientation), likely resulting from aspect-related variations in insolation. The strength of this N bias is considered to indicate that former glaciation upon the peninsula was often ‘marginal’, and mainly of cirque-type, with peaks extending little above regional equilibrium-line altitudes. This is supported by the fact that S and SE-facing cirques are the highest in the dataset, suggesting that glacier-cover was rarely sufficient to allow S and SE-facing glaciers to develop at low altitudes. The strength of these azimuth-related variations in cirque altitude is thought to reflect comparatively cloud-free conditions during former periods of glaciation. It is suggested that these characteristics, of marginal glaciation and comparatively cloud-free conditions, reflect the region’s former aridity, which was likely intensified at the global Last Glacial Maximum, and during earlier periods of ice advance, as a result of the development of negative pressure anomalies over the North Pacific (driven by the growth of the Laurentide Ice Sheet), combined with other factors, including an increase in the extent and duration of sea ice, a reduction in global sea levels, cooler sea surface temperatures, and the localised growth of mountain glaciers. There is published evidence to suggest extensive glaciation of the Kamchatka Peninsula at times during the Late Quaternary, yet the data presented here appears to suggest that such phases were comparatively short-lived, and that smaller cirque-type glaciers were generally more characteristic of the period.
Resumo:
Antarctic ice-free areas contain lakes and ponds that have interesting limnological features and are of wide global significance as early warning indicators of climatic and environmental change. However, most linmological and paleolimnological studies in continental Antarctica are limited to certain regions. There are several ice-free areas in Victoria Land that have not yet been studied well. There is therefore a need to extend limnological studies in space and time to understand how different geological and climatic features affect the composition and biological activity of freshwater communities. With the aim of contributing to a better limnological characterization of Victoria Land, this paper reports data on sedimentary pigments (used to identify the main algal taxa) obtained through a methodology that is more sensitive and selective than that of previous studies. Analyses were extended to 48 water bodies in ice-free areas with differing lithology, latitude, and altitude, and with different morphometry and physical, chemical, and biological characteristics in order to identify environmental factors affecting the distribution and composition of freshwater autotrophic communities. A wider knowledge of lakes in a limnologically important region of Antarctica was obtained. Cyanophyta was found to be the most important algal group, followed by Chlorophyta and Bacillariophyta, whereas latitude and altitude are the main factors affecting pigment distribution.
Resumo:
Aim: We used a combination of modelling and genetic approaches to investigate whether Pinguicula grandiflora and Saxifraga spathularis, two species that exhibit disjunct Lusitanian distributions, may have persisted through the Last Glacial Maximum (LGM, c. 21 ka) in separate northern and southern refugia.
Location: Northern and eastern Spain and south-western Ireland.
Methods: Palaeodistribution modelling using maxent was used to identify putative refugial areas for both species at the LGM, as well as to estimate their distributions during the Last Interglacial (LIG, c. 120 ka). Phylogeographical analysis of samples from across both species' ranges was carried out using one chloroplast and three nuclear loci for each species.
Results: The palaeodistribution models identified very limited suitable habitat for either species during the LIG, followed by expansion during the LGM. A single, large refugium across northern Spain and southern France was postulated for P. grandiflora. Two suitable regions were identified for S. spathularis: one in northern Spain, corresponding to the eastern part of the species' present-day distribution in Iberia, and the other on the continental shelf off the west coast of Brittany, south of the limit of the British–Irish ice sheet. Phylogeographical analyses indicated extremely reduced levels of genetic diversity in Irish populations of P. grandiflora relative to those in mainland Europe, but comparable levels of diversity between Irish and mainland European populations of S. spathularis, including the occurrence of private hapotypes in both regions.
Main conclusions: Modelling and phylogeographical analyses indicate that P. grandiflora persisted through the LGM in a southern refugium, and achieved its current Irish distribution via northward dispersal after the retreat of the ice sheets. Although the results for S. spathularis are more equivocal, a similar recolonization scenario also seems the most likely explanation for the species' current distribution.
Resumo:
The most recent major eruption at Rabaul was one of the largest known events at this complex system, having a VEI rating of 6. The eruption generated widespread airfall pumice lapilli and ash deposits and ignimbrites of different types. The total volume of pyroclastic material produced in the eruption exceeded 11 km3 and led to a new phase of collapse within Rabaul Caldera. Initial 14C dating of the eruptive products yielded an age of about 1400 yrs BP, and the eruption became known as the "1400 BP" eruption. Previous analyses of the timing of the eruption have linked it to events in AD 536 and AD 639. However, we have re-evaluated the age of the eruption using the Bayesian wiggle-match radiocarbon dating method, and the eruption is now thought to
have occurred in the interval AD 667-699. The only significant equatorial eruptions recorded in both Greenland and Antarctic ice during this interval are at AD 681 and AD 684, dates that coincide with frost rings in bristlecone pines of western USA in the same years. Definitively linking the Rabaul eruption to this narrow age range will require identification of Rabaul tephra in the ice records. However, it is proposed that a new working hypothesis for the timing of the most recent major eruption at Rabaul is that it occurred in the interval AD 681-684.
Resumo:
Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.
Resumo:
The Jutland peninsula in northern Denmark is home to the Limfjord, one of the largest estuarine bodies of water in the region. Human inhabitance of the Limfjord’s surrounding coastlines stretches back further than 7,800 cal BP, with anthropogenic influence on the landscape beginning approximately 6,000 cal BP. Understanding how the Limfjord as a system has changed throughout time is useful in comprehending subsistence patterns and anthropogenic influence. This research is part of a larger project aimed at discerning subsistence patterns and environmental change in the region. Following the Younger Dryas, as the Fennoscandian ice sheet began to melt, Denmark experienced isostatic rebound, which contributed to the complex sea level history in the region. Between ice melt and isostatic rebound, the Jutland peninsula experienced many transgression and regression events. Connections to surrounding seas have shifted throughout time, with most attention focused on the western connection of the Limfjord with the North Sea, which has experienced numerous closures and subsequent re-openings throughout the Holocene. Furthermore, the Limfjord-North Sea connection has been the focal point of research because of the west to east water flow in the system, and the present day higher salinity in the west compared to the east. Little to no consideration has been paid to the influence of the Kattegat and Baltic on the Limfjord until now. A 10m sediment core was taken from Sebbersund (near Nibe, Limfjord), along the connection between the Limfjord and the Kattegat in the east to understand how the eastern part of the system has changed and differed from changes observed in the west. The Sebbersund sequence spans a majority of the Holocene, from 9600 cal BP to 1030 cal BP, determined via radiocarbon dating of terrestrial macrofossils and bulk sediment. Over this time period palaeoenvironmental conditions were reconstructed through the use of geochemical analyses (13C, 15N, C:N), physical sediment analyses, dinoflagellate cyst abundances and molluscan analyses. apart from two instances of low salinity, one at the top and one at the bottom of the core, the sequence has a strong marine signal for a majority of the Holocene. Radiocarbon dating of bulk sediment samples showed the presence of old carbon in the system, creating an age offset between 1,300 ± 200 and 2,800 ± 200 calibrated 14C years compared to the age-depth curve based on the terrestrial macrofossils. This finding, along with the strong marine influence in the system, discerned through geochemical data, dinoflagellate cyst and mollusc counts, is important for obtaining accurate radiocarbon ages in the region and stresses the importance of understanding both the marine and freshwater reservoir effects. The marine dominance in the eastern Limfjord differs from the west, which is characterized by a number of freshwater events when the North Sea connection was closed off during the Holocene. The eastern connection was open to the Kattegat throughout a large portion of the Holocene, with influx of open ocean water entering the system during periods of higher sea level.