45 resultados para Angular-momentum Transfer
Resumo:
A semiclassical complex angular momentum theory, used to analyze atom-diatom reactive angular distributions, is applied to several well-known potential (one-particle) problems. Examples include resonance scattering, rainbow scattering, and the Eckart threshold model. Pade reconstruction of the corresponding matrix elements from the values at physical (integral) angular momenta and properties of the Pade approximants are discussed in detail.
Resumo:
We give a physical interpretation of the recently demonstrated non-conservative nature of interatomic forces in current-carrying nanostructures. We start from the analytical expression for the curl of these forces, and evaluate it for a point defect in a current-carrying system. We obtain a general definition of the capacity of electrical current flow to exert a non-conservative force, and thus do net work around closed paths, by a formal non-invasive test procedure. Second, we show that the gain in atomic kinetic energy in time, generated by non-conservative current-induced forces, is equivalent to the uncompensated stimulated emission of directional phonons. This connection with electron-phonon interactions quantifies explicitly the intuitive notion that non-conservative forces work by angular momentum transfer.
Resumo:
Aims.We aim to provide the atmospheric parameters and rotational velocities for a large sample of O- and early B-type stars, analysed in a homogeneous and consistent manner, for use in constraining theoretical models. Methods: Atmospheric parameters, stellar masses, and rotational velocities have been estimated for approximately 250 early B-type stars in the Large (LMC) and Small (SMC) Magellanic Clouds from high-resolution VLT-FLAMES data using the non-LTE TLUSTY model atmosphere code. This data set has been supplemented with our previous analyses of some 50 O-type stars (Mokiem et al. 2006, 2007) and 100 narrow-lined early B-type stars (Hunter et al. 2006; Trundle et al. 2007) from the same survey, providing a sample of ~400 early-type objects. Results: Comparison of the rotational velocities with evolutionary tracks suggests that the end of core hydrogen burning occurs later than currently predicted and we argue for an extension of the evolutionary tracks. We also show that the large number of the luminous blue supergiants observed in the fields are unlikely to have directly evolved from main-sequence massive O-type stars as neither their low rotational velocities nor their position on the H-R diagram are predicted. We suggest that blue loops or mass-transfer binary systems may populate the blue supergiant regime. By comparing the rotational velocity distributions of the Magellanic Cloud stars to a similar Galactic sample, we find that (at 3s confidence level) massive stars (above 8 M?) in the SMC rotate faster than those in the solar neighbourhood. However there appears to be no significant difference between the rotational velocity distributions in the Galaxy and the LMC. We find that the v sin i distributions in the SMC and LMC can modelled with an intrinsic rotational velocity distribution that is a Gaussian peaking at 175 km s-1 (SMC) and 100 km s-1 (LMC) with a 1/e half width of 150 km s-1. We find that in NGC 346 in the SMC, the 10-25 M? main-sequence stars appear to rotate faster than their higher mass counterparts. It is not expected that O-type stars spin down significantly through angular momentum loss via stellar winds at SMC metallicity, hence this could be a reflection of mass dependent birth spin rates. Recently Yoon et al. (2006) have determined rates of GRBs by modelling rapidly rotating massive star progenitors. Our measured rotational velocity distribution for the 10-25 M? stars is peaked at slightly higher velocities than they assume, supporting the idea that GRBs could come from rapid rotators with initial masses as low as 14 M? at low metallicities.
Resumo:
We study the establishment of vortex entanglement in remote Bose-Einstein condensates (BECs). We consider a two-mode photonic resource entangled in its orbital angular momentum (OAM) degree of freedom and, by exploiting the process of light-to-BEC OAM transfer, demonstrate that such entanglement can be efficiently passed to the matterlike systems. Our proposal thus represents a building block for novel dissipation-free and long-memory communication channels based on OAM. We discuss issues of practical realizability, stressing the feasibility of our scheme, and present an operative technique for the indirect inference of the set vortex entanglement.
Resumo:
Context. The magnetic activity of planet-hosting stars is an importantfactor for estimating the atmospheric stability of close-in exoplanetsand the age of their host stars. It has long been speculated thatclose-in exoplanets can influence the stellar activity level. However,testing for tidal or magnetic interaction effects in samples ofplanet-hosting stars is difficult because stellar activity hindersexoplanet detection, so that stellar samples with detected exoplanetsshow a bias toward low activity for small exoplanets.
Aims: Weaim to test whether exoplanets in close orbits influence the stellarrotation and magnetic activity of their host stars.
Methods: Wedeveloped a novel approach to test for systematic activity-enhancementsin planet-hosting stars. We use wide (several 100 AU) binary systems inwhich one of the stellar components is known to have an exoplanet, whilethe second stellar component does not have a detected planet andtherefore acts as a negative control. We use the stellar coronal X-rayemission as an observational proxy for magnetic activity and analyzeobservations performed with Chandra and XMM-Newton.
Results: Wefind that in two systems for which strong tidal interaction can beexpected the planet-hosting primary displays a much higher magneticactivity level than the planet-free secondary. In three systems forwhich weaker tidal interaction can be expected the activity levels ofthe two stellar components agree with each other.
Conclusions:Our observations indicate that the presence of Hot Jupiters may inhibitthe spin-down of host stars with thick outer convective layers. Possiblecauses for this effect include a transfer of angular momentum from theplanetary orbit to the stellar rotation through tidal interaction, ordifferences during the early evolution of the system, where the hoststar may decouple from the protoplanetary disk early because of a gapopened by the forming Hot Jupiter.
Resumo:
A full-electron coupled-state treatment of positronium (Ps)- inert gas scattering is developed within the context of the frozen target approximation. Calculations are performed for Ps(Is) scattering by Ne and Ar in the impact energy range 0-40 eV using coupled pseudostate expansions consisting of nine and 22 Ps states. The purpose of the pseudostates is primarily to represent ionization of the Ps which is found to be a major process at the higher energies. First Born estimates of target excitation are used to complement the frozen target results. The available experimental data are discussed in detail. It is pointed out that the very low energy measurements (less than or equal to2 eV) correspond to the momentum transfer cross section sigma(mom) and not to the elastic cross section sigma(el). Calculation shows that sigma(mom), and sigma(el) diverge very rapidly with increasing energy and consequently comparisons of the low-energy data with ITel can be very misleading. Agreement between the calculations and the low-energy measurements of anion as well;as higher energy (greater than or equal to15 eV) beam measurements of the total cross section, is less than satisfactory. Results for Ps(1s) scattering by Kr and Xe in the static-exchange approximation are also presented.
Resumo:
Energy levels, radiative rates, collision strengths, and effective collision strengths for all transitions up to and including the n = 5 levels of AlXIII have been computed in the j j coupling scheme including relativistic effects. All partial waves with angular momentum J less than or equal to 60 have been included, and resonances have been resolved in a fine energy grid in the threshold region. Collision strengths are tabulated at energies above thresholds in the range 170.0 less than or equal to E less than or equal to 300.0 Ryd, and results for effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron velocities, are tabulated over a wide temperature range of 4.4 less than or equal to log T-e less than or equal to 6.8 K. The importance of including relativistic effects in a calculation is discussed in comparison with the earlier available non-relativistic results.
Resumo:
Collision strengths for all transitions up to and including the n = 5 levels of Al XIII have been computed in the LS coupling scheme using the R-matrix code. All partial waves with angular momentum L less than or equal to 45 have been included, and resonances have been resolved in a fine energy grid in the threshold region. Collision strengths are tabulated at energies above thresholds in the range 162.30 less than or equal to E less than or equal to 220.0 Ry, and results for the 1s-2s and 1s-2p transitions are compared with those of previous authors. Additionally, effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron velocities, are tabulated over a wide temperature range of 4.40 less than or equal to log T-e less than or equal to 6.40 K.
Resumo:
In 'Charge transfer from the negative-energy continuum: alternative mechanism for pair production in relativistic atomic collisions', Eichler (1995 Phys. Rev. Lett. 75 3653) proposes an alternative mechanism for capture by pair production, and from it derives an analytic expression for the total cross section with a surprisingly strong energy dependence. We show that, in fact, there is no alternative mechanism; rather the above mechanism may be more transparently viewed as an ionization-like transition in one centre with inclusion of continuum distortion by the second centre. We further show that to Centre the initial and final states on the target and projectile leads to confusion in the momentum transfer vectors, and hence, respectively that the alleged high-energy behaviour is erroneous.
Resumo:
A simple plane wave solution of the Schrodinger-Helmholtz equation is a quantum eigenfunction obeying both energy and linear momentum correspondence principles. Inclusion of the outgoing wave with scattering amplitude f asymptotic development of the plane wave, we show that there is a problem with angular momentum when we consider forward scattering at the point of closest approach and at large impact parameter given semiclassically by (l + 1/2)/k where l is the azimuthal quantum number and may be large (J. Leech et al., Phys. Rev. Lett. 88. 257901 (2002)). The problem is resolved via non- uniform, non-standard analysis involving the Heaviside step function, unifying classical, semiclassical and quantum mechanics, and the treatment is extended to the case of pure Coulomb scattering.
Resumo:
An analysis is presented of VLT-FLAMES spectroscopy for three Galactic clusters, NGC3293, NGC4755 and NGC6611. Non-LTE model atmosphere calculations have been used to estimate effective temperatures (from either the helium spectrum or the silicon ionization equilibrium) and gravities (from the hydrogen spectrum). Projected rotational velocities have been deduced from the helium spectrum (for fast and moderate rotators) or the metal line spectrum (for slow rotators). The origin of the low gravity estimates for apparently near main sequence objects is discussed and is related to the stellar rotational velocity. The atmospheric parameters have been used to estimate cluster distances (which are generally in good agreement with previous determinations) and these have been used to estimate stellar luminosities and evolutionary masses. The observed Hertzsprung-Russell diagrams are compared with theoretical predictions and some discrepancies including differences in the main sequence luminosities are discussed. Cluster ages have been deduced and evidence for non-coeval star formation is found for all three of the clusters. Projected rotational velocities for targets in the older clusters, NGC3293 and NGC4755, have been found to be systematically larger than those for the field, confirming recent results in other similar age clusters. The distribution of projected rotational velocities are consistent with a Gaussian distribution of intrinsic rotational velocities. For the relatively unevolved targets in the older clusters, NGC3293 and NGC4755, the peak of the velocity distribution would be 250 km s(-1) with a full-width-half-maximum of approximately 180 km s(-1). For NGC6611, the sample size is relatively small but implies a lower mean rotational velocity. This may be evidence for the spin-down effect due to angular momentum loss through stellar winds, although our results are consistent with those found for very young high mass stars. For all three clusters we deduce present day mass functions with Gamma-values in the range of -1.5 to -1.8, which are similar to other young stellar clusters in the Milky Way.
Resumo:
Measurements of electron capture and ionization of O-2 molecules in collisions with H+ and O+ ions have been made over an energy range 10 - 100 keV. Cross sections for dissociative and nondissociative interactions have been separately determined using coincidence techniques. Nondissociative channels leading to O-2(+) product formation are shown to be dominant for both the H+ and the O+ projectiles in the capture collisions and only for the H+ projectiles in the ionization collisions. Dissociative channels are dominant for ionizing collisions involving O+ projectiles. The energy distributions of the O+ fragment products from collisions involving H+ and O+ have also been measured for the first time using time-of-flight methods, and the results are compared with those from other related studies. These measurements have been used to describe the interaction of the energetic ions trapped in Jupiter's magnetosphere with the very thin oxygen atmosphere of the icy satellite Europa. It is shown that the ionization of oxygen molecules is dominated by charge exchange plus ion impact ionization processes rather than photoionization. In addition, dissociation is predominately induced through excitation of electrons into high-lying repulsive energy states ( electronically) rather than arising from momentum transfer from knock-on collisions between colliding nuclei, which are the only processes included in current models. Future modeling will need to include both these processes.
Resumo:
Absolute cross sections have been measured for single and double charge exchange and x-ray line emission for highly charged ions of C, N, 0, and Ne colliding with He, H-2 CO2, and H2O at collisions energies of 7q keV. Present results of charge exchange in He and H-2 compare favorably with previous results. For CO2 and H2O, where prior work is scarce, the classical overbarrier model is found to overestimate results by up to a factor of 3. An analysis of the relative intensities of the observed Lyman x-ray transitions indicates that capture into l states is not statistical, as collision velocities are insufficient to populate the highest angular-momentum states. The importance of autoionization following multiple capture is highlighted, and enhanced radiative stabilization following double capture is observed and compared to other studies. Present results are also discussed in terms of mechanisms likely to generate x-ray emission in comets.
Resumo:
We present a semiclassical complex angular momentum (CAM) analysis of the forward scattering peak which occurs at a translational collision energy around 32 meV in the quantum mechanical calculations for the F + H2(v = 0, j = 0) ? HF(v' = 2, j' = 0) + H reaction on the Stark–Werner potential energy surface. The semiclassical CAM theory is modified to cover the forward and backward scattering angles. The peak is shown to result from constructive/destructive interference of the two Regge states associated with two resonances, one in the transition state region and the other in the exit channel van der Waals well. In addition, we demonstrate that the oscillations in the energy dependence of the backward differential cross section are caused by the interference between the direct backward scattering and the decay of the two resonance complexes returning to the backward direction after one full rotation.