4 resultados para Ambient pressures
Resumo:
This study examines the impact of ambient temperature on emotional well-being in the U.S. population aged 18+. The U.S. is an interesting test case because of its resources, technology and variation in climate across different areas, which also allows us to examine whether adaptation to different climates could weaken or even eliminate the impact of heat on well-being. Using survey responses from 1.9 million Americans over the period from 2008 to 2013, we estimate the effect of temperature on well-being from exogenous day-to-day temperature variation within respondents’ area of residence and test whether this effect varies across areas with different climates. We find that increasing temperatures significantly reduce well-being. Compared to average daily temperatures in the 50–60 °F (10–16 °C) range, temperatures above 70 °F (21 °C) reduce positive emotions (e.g. joy, happiness), increase negative emotions (e.g. stress, anger), and increase fatigue (feeling tired, low energy). These effects are particularly strong among less educated and older Americans. However, there is no consistent evidence that heat effects on well-being differ across areas with mild and hot summers, suggesting limited variation in heat adaptation.
Resumo:
The adulteration of food has received substantial amounts of media attention in the last few years, with events such as the European horsemeat scandal in 2013 sending shockwaves through society. Almost all cases are motivated by the pursuit of profits and are often aided by long and complex supply chains. In the past few years, the rapid growth of ambient mass spectrometry (AMS) has been remarkable, with over thirty different ambient ionisation techniques available. Due to the increasing concerns of the food industry and regulators worldwide, AMS is now being utilised to investigate whether or not it can generate results which are faster yet comparable to those of conventional techniques. This article reviews some aspects of the adulteration of food and its impact on the economy and the public's health, the background to ambient mass spectrometry and the studies that have been undertaken to detect food adulteration using this technology.
Resumo:
Animal communication plays a crucial role in many species, and it involves a sender producing a signal and a receiver responding to that signal. The shape of a signal is determined by selection pressures acting upon it. One factor that exerts selection on acoustic signals is the acoustic environment through which the signal is transmitted. Recent experimental studies clearly show that senders adjust their signals in response to increased levels of anthropogenic noise. However, to understand how noise affects the whole process of communication, it is vital to know how noise affects the receiver’s response during vocal interactions. Therefore, we experimentally manipulated ambient noise levels to expose male European robins (Erithacus rubecula) to two playback treatments consisting of the same song: one with noise and another one without noise. We found that males responding to a conspecific in a noise polluted environment increased minimum frequency and decreased song complexity and song duration. Thus, we show that the whole process of communication is affected by noise, not just the behaviour of the sender.