3 resultados para Ambient conditions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Baeyer–Villiger oxidation of cyclic ketones, using H2O2 as the oxidising agent, was systematically studied using a range of metal chlorides in different solvents, and in neat chlorogallate(III) ionic liquids. The extremely high activity of GaCl3 in promoting oxidation with H2O2, irrespective of solvent, was reported for the first time. The activity of all other metal chlorides was strongly solvent-dependent. In particular, AlCl3 was very active in a protic solvent (ethanol), and tin chlorides, SnCl4 and SnCl2, were active in aprotic solvents (toluene and dioxane). In order to eliminate the need for volatile organic solvent, a Lewis acidic chlorogallate(III) ionic liquid was used in the place of GaCl3, which afforded typically 89–94% yields of lactones in 1–120 min, at ambient conditions. Raman and 71Ga NMR spectroscopic studies suggest that the active species, in both GaCl3 and chlorogallate(III) ionic liquid systems, are chlorohydroxygallate(III) anions, [GaCl3OH]−, which are the products of partial hydrolysis of GaCl3 and chlorogallate(III) anions; therefore, the presence of water is crucial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Harnessing solar energy to provide for the thermal needs of buildings is one of the most promising solutions to the global energy issue. Exploiting the additional surface area provided by the building’s façade can significantly increase the solar energy output. Developing a range of integrated and adaptable products that do not significantly affect the building’s aesthetics is vital to enabling the building integrated solar thermal market to expand and prosper. This work reviews and evaluates solar thermal facades in terms of the standard collector type, which they are based on, and their component make-up. Daily efficiency models are presented, based on a combination of the Hottel Whillier Bliss model and finite element simulation. Novel and market available solar thermal systems are also reviewed and evaluated using standard evaluation methods, based on experimentally determined parameters ISO 9806. Solar thermal collectors integrated directly into the facade benefit from the additional wall insulation at the back; displaying higher efficiencies then an identical collector offset from the facade. Unglazed solar thermal facades with high capacitance absorbers (e.g. concrete) experience a shift in peak maximum energy yield and display a lower sensitivity to ambient conditions than the traditional metallic based unglazed collectors. Glazed solar thermal facades, used for high temperature applications (domestic hot water), result in overheating of the building’s interior which can be reduced significantly through the inclusion of high quality wall insulation. For low temperature applications (preheating systems), the cheaper unglazed systems offer the most economic solution. The inclusion of brighter colour for the glazing and darker colour for the absorber shows the lowest efficiency reductions (<4%). Novel solar thermal façade solutions include solar collectors integrated into balcony rails, shading devices, louvers, windows or gutters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel approach is developed for desulphurization of fuels or organics without use of catalyst. In this process, organic and aqueous phases are mixed in a predefined manner under ambient conditions and passed through a cavitating device. Vapor cavities formed in the cavitating device are then collapsed which generate (in-situ) oxidizing species which react with the sulphur moiety resulting in the removal of sulphur from the organic phase. In this work, vortex diode was used as a cavitating device. Three organic solvents (n-octane, toluene and n-octanol) containing known amount of a model sulphur compound (thiophene) up to initial concentrations of 500 ppm were used to verify the proposed method. A very high removal of sulphur content to the extent of 100% was demonstrated. The nature of organic phase and the ratio of aqueous to organic phase were found to be the most important process parameters. The results were also verified and substantiated using commercial diesel as a solvent. The developed process has great potential for deep of various organics, in general, and for transportation fuels, in particular.