154 resultados para Alternative solvents
Resumo:
Over the last two decades, ionic liquids have gained importance as alternative solvents to conventional VOCs in the field of homogeneous catalysis. This success is not only due to their ability to dissolve a large amount of metal catalysts, but it is also due to their potential to enhance yields of enantiopure products. The art of preparation of a specific enantiomer is a highly desired one and searched for in pharmaceutical industry. This work presents a study on solubility in water and in water/methanol mixture of a set of ILs composed of the bis (trifluoromethylsulfonyl) imide anion and of the N-alkyl-triethyl-ammonium cation (abbrev. [NR,222][NTf2]) with the alkyl chain R ranging from 6 to 12 carbons. Mutual solubilities between ILs and water, as well as between ILs and methanol/water mixture were investigated in detail. These solubilities were measured using two well-known and accurate experimental techniques based on a volumetric and a cloud-point methods. Both methods enabled us to measure the Tx diagrams reflecting the mutual solubilities between water (or water/methanol) and selected ILs in the temperature range from 293.15 to 338.15 K. The data were fitted by using the modified Flory-Huggins equation proposed by de Sousa and Rebelo and compared also with the prediction carried out by the Cosmo-RS methodology
Resumo:
Many reactions involving phosphorus reagents require highly anhydrous and inert conditions for their successful implementation. In particular, the use of PCl3 and its derivatives for synthesis is often hampered by the inherent sensitivity of the materials themselves. Ionic liquids are emerging as green alternative solvents for a range of processes, and in particular have proven to be excellent media for highly sensitive phosphorus reagents without the need for anhydrous or inert conditions. Herein, we report the use of ionic liquids as both storage and reaction media which allows difficult and sensitive chemistry to be achieved in a more accessible manner.
Resumo:
Electrochemical double layer capacitors (EDLCs), also known as supercapacitors, are promising energy storage devices, especially when considering high power applications [1]. EDLCs can be charged and discharged within seconds [1], feature high power (10 kW·kg-1) and an excellent cycle life (>500,000 cycles). All these properties are a result of the energy storage process of EDLCs, which relies on storing energy by charge separation instead of chemical redox reactions, as utilized in battery systems. Upon charging, double layers are forming at the electrode/electrolyte interface consisting of the electrolyte’s ions and electric charges at the electrode surface.In state-of-the-art EDLC systems activated carbons (AC) are used as active materials and tetraethylammonium tetrafluoroborate ([Et4N][BF4]) dissolved in organic solvents like propylene carbonate (PC) or acetonitrile (ACN) are commonly used as the electrolyte [2]. These combinations of materials allow operative voltages up to 2.7 V - 2.8 V and an energy in the order of 5 Wh·kg-1[3]. The energy of EDLCs is dependent on the square of the operative voltage, thus increasing the usable operative voltage has a strong effect on the delivered energy of the device [1]. Due to their high electrochemical stability, ionic liquids (ILs) were thoroughly investigated as electrolytes for EDLCs, as well as, batteries, enabling high operating voltages as high as 3.2 V - 3.5 V for the former [2]. While their unique ionic structure allows the usage of neat ILs as electrolyte in EDLCs, ILs suffer from low conductivity and high viscosity increasing the intrinsic resistance and, as a result, a lower power output of the device. In order to overcome this issue, the usage of blends of ionic liquids and organic solvents has been considered a feasible strategy as they combine high usable voltages, while still retaining good transport properties at the same time.In our recent work the ionic liquid 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide ([Pyrr14][TFSI]) was combined with two nitrile-based organic solvents, namely butyronitrile (BTN) and adiponitrile (ADN), and the resulting blends were investing regarding their usage in electrochemical double layer capacitors [4,5]. Firstly, the physicochemical properties were investigated, showing good transport properties for both blends, which are similar to the state-of-the-art combination of [Et4N][BF4] in PC. Secondly, the electrochemical properties for EDLC application were studied in depth revealing a high electrochemical stability with a maximum operative voltage as high as 3.7 V. In full cells these high voltage organic solvent based electrolytes have a good performance in terms of capacitance and an acceptable equivalent series resistance at cut-off voltages of 3.2 and 3.5 V. However, long term stability tests by float testing revealed stability issues when using a maximum voltage of 3.5 V for prolonged time, whereas at 3.2 V no such issues are observed (Fig. 1).Considering the obtained results, the usage of ADN and BTN blends with [Pyrr14][TFSI] in EDLCs appears to be an interesting alternative to state-of-the-art organic solvent based electrolytes, allowing the usage of higher maximum operative voltages while having similar transport properties to 1 mol∙dm-3 [Et4N][BF4] in PC at the same time.
Evaluating the air-cycle as a refrigerant free alternative for temperature controlled road transport
Resumo:
Objective To present a first and second trimester Down syndrome screening strategy, whereby second-trimester marker determination is contingent on the first-trimester results. Unlike non-disclosure sequential screening (the Integrated test), which requires all women to have markers in both trimesters, this allows a large proportion of the women to complete screening in the first trimester. Methods Two first-trimester risk cut-offs defined three types of results: positive and referred for early diagnosis; negative with screening complete; and intermediate, needing second-trimester markers. Multivariate Gaussian modelling with Monte Carlo simulation was used to estimate the false-positive rate for a fixed 85% detection rate. The false-positive rate was evaluated for various early detection rates and early test completion rates. Model parameters were taken from the SURUSS trial. Results Completion of screening in the first trimester for 75% of women resulted in a 30% early detection rate and a 55% second trimester detected rate (net 85%) with a false-positive rate only 0.1% above that achievable by the Integrated test. The screen-positive rate was 0.1% in the first trimester and 4.7% for those continuing to be tested in the second trimester. If the early detection rate were to be increased to 45% or the early completion rate were to be increased to 80%, there would be a further 0.1% increase in the false-positive rate. Conclusion Contingent screening can achieve results comparable with the Integrated test but with earlier completion of screening for most women. Both strategies need to be evaluated in large-scale prospective studies particularly in relation to psychological impact and practicability.
Resumo:
This is an invited contribution in a special issue of the Journal of Cement and Concrete Composites
Resumo:
This article highlights the importance of dedicating a whole special issue on New and Alternative Social movements in Spain. It sets the basis for this endeavour by emphasizing the importance of the 2004, unexpected, electoral victory of the Spanish socialists, and the subsequent satisfaction of the important demands promoted by certain social movements actors and Spanish society in general (the withdrawal of Spanish troops from Iraq, the cancellation of the National Hydrological Plan and the Legalization of same sex marriages. The view supported is that these developments signify the end of a protest cycle, which could have the same effect with the early 1980s socialist victory. After a discussion around the low associationalism that characterizes Spanish society and recent experience of authoritarianism, it is suggested that it is time for the study of new and alternative social movements in Spain and other south European societies to move beyond the emphasis on exceptionality but appreciate differences by focusing on the available political opportunities and the identity of social movement actors. The remainder of the article is dedicated to introducing the contributing articles.
Resumo:
The extraction of both UO22+ and trivalent lanthanide and actinide ions (Am3+, Nd3+, Eu3+) by dialkylphosphoric or dialkylphosphinic acids from aqueous solutions into the ionic liquid, 1-decyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide has been studied and compared to extractions into dodecane. Radiotracer partitioning measurements show comparable patterns of distribution ratios for both the ionic liquid/aqueous and dodecane/aqueous systems, and the limiting slopes at low acidity indicate the partitioning of neutral complexes in both solvent systems. The metal ion coordination environment, elucidated from EXAFS and UV-visible spectroscopy measurements, is equivalent in the ionic liquid and dodecane solutions with coordination of the uranyl cation by two hydrogen-bonded extractant dimers, and of the trivalent cations by three extractant dimers. This is the first definitive report of a system where both the biphasic extraction equilibria and metal coordination environment are the same in an ionic liquid and a molecular organic solvent.
Resumo:
Rachid S, Ohlsen K, Wallner U, Hacker J, Hecker M, Ziebuhr W. Institut für Molekulare Infektionsbiologie, D-97070 Würzburg, Germany. Osmotic stress was found to induce biofilm formation in a Staphylococcus aureus mucosal isolate. Inactivation of a global regulator of the bacterial stress response, the alternative transcription factor sigma(B), resulted in a biofilm-negative phenotype and loss of salt-induced biofilm production. Complementation of the mutant strain with an expression plasmid encoding sigma(B) completely restored the wild-type phenotype. The combined data suggest a critical role of sigma(B) in S. aureus biofilm regulation under environmental stress conditions.
Resumo:
The impact of the alternative sigma factor sigma B (SigB) on pathogenesis of Staphylococcus aureus is not conclusively clarified. In this study, a central venous catheter (CVC) related model of multiorgan infection was used to investigate the role of SigB for the pathogenesis of S. aureus infections and biofilm formation in vivo. Analysis of two SigB-positive wild-type strains and their isogenic mutants revealed uniformly that the wild-type was significantly more virulent than the SigB-deficient mutant. The observed difference in virulence was apparently not linked to the capability of the strains to form biofilms in vivo since wild-type and mutant strains were able to produce biofilm layers inside of the catheter. The data strongly indicate that the alternative sigma factor SigB plays a role in CVC-associated infections caused by S. aureus.