26 resultados para Alpha-like Toxin
Burkholderia cenocepacia BC2L-C Is a Super Lectin with Dual Specificity and Proinflammatory Activity
Resumo:
Lectins and adhesins are involved in bacterial adhesion to host tissues and mucus during early steps of infection. We report the characterization of BC2L-C, a soluble lectin from the opportunistic pathogen Burkholderia cenocepacia, which has two distinct domains with unique specificities and biological activities. The N-terminal domain is a novel TNF-alpha-like fucose-binding lectin, while the C-terminal part is similar to a superfamily of calcium-dependent bacterial lectins. The C-terminal domain displays specificity for mannose and L-glycero-D-manno-heptose. BC2L-C is therefore a superlectin that binds independently to mannose/heptose glycoconjugates and fucosylated human histo-blood group epitopes. The apo form of the C-terminal domain crystallized as a dimer, and calcium and mannose could be docked in the binding site. The whole lectin is hexameric and the overall structure, determined by electron microscopy and small angle X-ray scattering, reveals a flexible arrangement of three mannose/heptose-specific dimers flanked by two fucose-specific TNF-alpha-like trimers. We propose that BC2L-C binds to the bacterial surface in a mannose/heptose-dependent manner via the C-terminal domain. The TNF-alpha-like domain triggers IL-8 production in cultured airway epithelial cells in a carbohydrate-independent manner, and is therefore proposed to play a role in the dysregulated proinflammatory response observed in B. cenocepacia lung infections. The unique architecture of this newly recognized superlectin correlates with multiple functions including bacterial cell cross-linking, adhesion to human epithelia, and stimulation of inflammation.
Resumo:
Synucleins are small proteins that are highly expressed in brain tissue and are localised at presynaptic terminals in neurons. alpha-Synuclein has been identified as a component of intracellular fibrillar protein deposits in several neurodegenerative diseases, and two mutant forms of alpha-synuclein have been associated with autosomal-dominant Parkinson's Disease. A fragment of alpha-synuclein has also been identified as the non-Abeta component of Alzheimer's Disease amyloid. In this review we describe some structural properties of alpha-synuclein and the two mutant forms, as well as alpha-synuclein fragments, with particular emphasis on their ability to form beta-sheet on ageing and aggregate to form amyloid-like fibrils. Differences in the rates of aggregation and morphologies of the fibrils formed by alpha-synuclein and the two mutant proteins are highlighted. Interactions between alpha-synuclein and other proteins, especially those that are components of amyloid or Lewy bodies, are considered. The toxicity of alpha-synuclein and related peptides towards neurons is also discussing in relation to the aetiology of neurodegenerative diseases.
Resumo:
Zeranol, an oestrogenic growth promoter in food animals, is banned within the European Union (EU). However, commercially available immunoassay kits for zeranol cross-react with toxins formed by naturally occurring Fusarium spp. fungi, leading to false-positive screening results. This paper describes the validation of a specificity enhanced, rapid dry reagent time-resolved fluoroimmunoassay (TR-FIA) for zeranol (recovery 99%, limit of detection 1.3 ng ml(-1)) demonstrating that up to 150 ng ml(-1) of Fusarium spp. toxins in urine do not lead to false-positive results. This assay will assist EU Member States to implement Council Directive 961 23\EC, which requires states to monitor for potential abuses of zeranol. A similar TR-FIA for the Fusarium spp. toxin a-zearalenol, using the same sample extract, is also described (recovery 68%, limit of detection 5.6 ng ml(-1)). Only the addition of diluted sample extract is required to perform these dry-reagent TR-FIAs, the results being available within 1 h of extract application. The EU-funded project 'Natural Zeranol' (FAIR5-CT97-3443) will use these fluoroimmunoassays to screen bovine urine in four Member States to gather data on the seasonality of Fusarium spp. toxin contamination of urine and the incidence of zeranol screening test positives.
Resumo:
The transient receptor potential (TRP) channels are unique cellular sensors that are widely expressed in many neuronal and nonneuronal cells. Among the TRP family members, TRPA1 and TRPV4 are emerging as candidate mechanosensitive channels that play a pivotal role in inflammatory pain and mechanical hyperalgesia. Odontoblasts are nonneuronal cells that possess many of the features of mechanosensitive cells and mediate important defense and sensory functions. However, the effect of inflammation on the activity of the odontoblast's mechanosensitive channels remains unknown. By using immunohistochemistry and calcium microfluorimetry, we showed that odontoblast-like cells express TRPA1 and TRPV4 and that these channels were activated by hypotonicity-induced membrane stretch. Short treatment of odontoblast-like cells with tumor necrosis factor (TNF)-α enhanced TRPA1 and TRPV4 responses to their chemical agonists and membrane stretch. This enhanced channel activity was accompanied by phospho-p38 mitogen-activated protein kinase (MAPK) expression. Treatment of cells with the p38 inhibitor SB202190 reduced TNF-α effects, suggesting modulation of channel activity via p38 MAPK. In addition, TNF-α treatment also resulted in an up-regulation of TRPA1 expression but down-regulation of TRPV4. Unlike TRPV4, enhanced TRPA1 expression was also evident in dental pulp of carious compared with noncarious teeth. SB202190 treatment significantly reduced TNF-α-induced TRPA1 expression, suggesting a role for p38 MAPK signaling in modulating both the transcriptional and non-transcriptional regulation of TRP channels in odontoblasts.
Resumo:
Alpha-synuclein has been linked to amyloidogenesis in Parkinson's disease and other neurodegenerative disorders. We have previously shown that a peptide comprising residues 68-78 of alpha-synuclein is the minimum fragment that, like alpha-synuclein itself, forms amyloid fibrils and exhibits toxicity towards cells in culture. Hughes et al. [J. Biol. Chem. 275 (2000) 25109] showed that an N-methylated derivative of Abeta(25-35) inhibited the formation of fibrils by Abeta(25-35) and reduced its toxicity. We have now extended this concept to an amyloidogenic alpha-synuclein-based peptide. Alpha-synuclein(68-78), N-methylated at G1y73, was compared to non-methylated peptide. Whereas alpha-synuclein(68-78) formed fibrils and was toxic to cells, the N-methylated analogue had neither of these properties. Moreover, an equimolar mixture of the non-methylated and methylated peptides formed very few fibrils and toxicity was markedly reduced.
Resumo:
Fibrillar deposits of alpha-synuclein occur in several neurodegenerative diseases. Two mutant forms of alpha-synuclein have been associated with early-onset Parkinson's disease, and a fragment has been identified as the non-amyloid-beta peptide component of Alzheimer's disease amyloid (NAC). Upon aging, solutions of alpha-synuclein and NAC change conformation to beta-sheet, detectable by CD spectroscopy, and form oligomers that deposit as amyloid-like fibrils, detectable by electron microscopy. These aged peptides are also neurotoxic. Experiments on fragments of NAC have enabled the region of NAC responsible for its aggregation and toxicity to be identified. NAC(8-18) is the smallest fragment that aggregates, as indicated by the concentration of peptide remaining in solution after 3 days, and forms fibrils, as determined by electron microscopy. Fragments NAC(8-18) and NAC(8-16) are toxic, whereas NAC(12-18), NAC(9-16) and NAC(8-15) are not. Hence residues 8-16 of NAC comprise the region crucial for toxicity. Toxicity induced by alpha-synuclein, NAC and NAC(1-18) oligomers occurs via an apoptotic mechanism, possibly initiated by oxidative damage, since these peptides liberate hydroxyl radicals in the presence of iron. Molecules with anti-aggregational and/or antioxidant properties may therefore be potential therapeutic agents.
Resumo:
Convergent biochemical and genetic evidence suggests that the formation of alpha-synuclein (alpha-syn) protein deposits is an important and, probably, seminal step in the development of Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). It has been reported that transgenic animals overexpressing human alpha-syn develop lesions similar to those found in the brain in PD, together with a progressive loss of dopaminergic cells and associated abnormalities of motor function. Inhibiting and/or reversing alpha-syn self-aggregation could, therefore, provide a novel approach to treating the underlying cause of these diseases. We synthesized a library of overlapping 7-mer peptides spanning the entire alpha-syn sequence, and identified amino acid residues 64-100 of alpha-syn as the binding region responsible for its self-association. Modified short peptides containing alpha-syn amino acid sequences from part of this binding region (residues 69-72), named alpha-syn inhibitors (ASI), were found to interact with full-length alpha-syn and block its assembly into both early oligomers and mature amyloid-like fibrils. We also developed a cell-permeable inhibitor of alpha-syn aggregation (ASID), using the polyarginine peptide delivery system. This ASID peptide was able to inhibit the DNA damage induced by Fe(II) in neuronal cells transfected with alpha-syn(A53T), a familial PD-associated mutation. ASI peptides without this delivery system did not reverse levels of Fe(II)-induced DNA damage. Furthermore, the ASID peptide increased (P
Resumo:
Photon yields for the 1s(2)-1s2p (He-alpha) transition of He- like ions have been measured for laser irradiated, thin foils of Ti, V and Fe. The laser pulses were of 0.527 mum wavelength and of either 80 or 300 ps duration. The data shows significant shot-to-shot variation but the Ti data is broadly consistent with previous results. In this work, we extend the previous results to include, new elements, longer pulse lengths and yields measured for emission from both surfaces of the foils. We compare our data to simulations using a hydrodynamic code and a collisional radiative model.
Resumo:
The venoms of buthid scorpions are known to contain basic, single-chain protein toxins (alpha toxins) consisting of 60–70 amino acid residues that are tightly folded by four disulfide bridges. Here we describe isolation and sequencing of three novel putative alpha toxins (AamH1-3) from the venom of the North African scorpion, Androctonus amoreuxi, and subsequent cloning of their precursor cDNAs from the same sample of venom. This experimental approach can expedite functional genomic analyses of the protein toxins from this group of venomous animals and does not require specimen sacrifice for cloning of protein toxin precursor cDNAs.
Resumo:
α1-antitrypsin (α1-AT) deficiency is a genetic disease which manifests as early-onset emphysema or liver disease. Although the majority of α1-AT is produced by the liver, it is also produced by bronchial epithelial cells, amongst others, in the lung. Herein, we investigate the effects of mutant Z α1-AT (ZAAT) expression on apoptosis in a human bronchial epithelial cell line (16HBE14o-) and delineate the mechanisms involved.
Control, M variant α1-AT (MAAT)- or ZAAT-expressing cells were assessed for apoptosis, caspase-3 activity, cell viability, phosphorylation of Bad, nuclear factor (NF)-κB activation and induced expression of a selection of pro- and anti-apoptotic genes.
Expression of ZAAT in 16HBE14o- cells, like MAAT, inhibited basal and agonist-induced apoptosis. ZAAT expression also inhibited caspase-3 activity by 57% compared with control cells (p = 0.05) and was a more potent inhibitor than MAAT. Whilst ZAAT had no effect on the activity of Bad, its expression activated NF-κB-dependent gene expression above control or MAAT-expressing cells. In 16HBE14o- cells but not HEK293 cells, ZAAT upregulated expression of cIAP-1, an upstream regulator of NF-κB. cIAP1 expression was increased in ZAAT versus MAAT bronchial biopsies.
The data suggest a novel mechanism by which ZAAT may promote human bronchial epithelial cell survival.