28 resultados para Alien
Predators vs. alien: differential biotic resistance to an invasive species by two resident predators
Resumo:
Globally, Invasive Alien Species (IAS) are considered to be one of the major threats to native biodiversity, with the World Conservation Union (IUCN) citing their impacts as ?immense, insidious, and usually irreversible?. It is estimated that 11% of the c. 12,000 alien species in Europe are invasive, causing environmental, economic and social damage; and it is reasonable to expect that the rate of biological invasions into Europe will increase in the coming years. In order to assess the current position regarding IAS in Europe and to determine the issues that were deemed to be most important or critical regarding these damaging species, the international Freshwater Invasives - Networking for Strategy (FINS) conference was convened in Ireland in April 2013. Delegates from throughout Europe and invited speakers from around the world were brought together for the conference. These comprised academics, applied scientists, policy makers, politicians, practitioners and representative stakeholder groups. A horizon scanning and issue prioritization approach was used by in excess of 100 expert delegates in a workshop setting to elucidate the Top 20 IAS issues in Europe. These issues do not focus solely on freshwater habitats and taxa but relate also to marine and terrestrial situations. The Top 20 issues that resulted represent a tool for IAS management and should also be used to support policy makers as they prepare European IAS legislation.
Resumo:
Invasive alien species (IAS) can cause substantive ecological impacts, and the role of temperature in mediating these impacts may become increasingly significant in a changing climate. Habitat conditions and physiological optima offer predictive information for IAS impacts in novel environments. Here, using meta-analysis and laboratory experiments, we tested the hypothesis that the impacts of IAS in the field are inversely correlated with the difference in their ambient and optimal temperatures. A meta-analysis of 29 studies of consumptive impacts of IAS in inland waters revealed that the impacts of fishes and crustaceans are higher at temperatures that more closely match their thermal growth optima. In particular, the maximum impact potential was constrained by increased differences between ambient and optimal temperatures, as indicated by the steeper slope of a quantile regression on the upper 25th percentile of impact data compared to that of a weighted linear regression on all data with measured variances. We complemented this study with an experimental analysis of the functional response - the relationship between predation rate and prey supply - of two invasive predators (freshwater mysid shrimp, Hemimysis anomala and Mysis diluviana) across relevant temperature gradients; both of these species have previously been found to exert strong community-level impacts that are corroborated by their functional responses to different prey items. The functional response experiments showed that maximum feeding rates of H. anomala and M. diluviana have distinct peaks near their respective thermal optima. Although variation in impacts may be caused by numerous abiotic or biotic habitat characteristics, both our analyses point to temperature as a key mediator of IAS impact levels in inland waters and suggest that IAS management should prioritize habitats in the invaded range that more closely match the thermal optima of targeted invaders.
Resumo:
Despite intensive research during the past decade on the effects of alien species, invasion science still lacks the capacity to accurately predict the impacts of those species and, therefore, to provide timely advice to managers on where limited resources should be allocated. This capacity has been limited partly by the context-dependent nature of ecological impacts, research highly skewed toward certain taxa and habitat types, and the lack of standardized methods for detecting and quantifying impacts. We review different strategies, including specific experimental and observational approaches, for detecting and quantifying the ecological impacts of alien species. These include a four-way experimental plot design for comparing impact studies of different organisms. Furthermore, we identify hypothesis-driven parameters that should be measured at invaded sites to maximize insights into the nature of the impact. We also present strategies for recognizing high-impact species. Our recommendations provide a foundation for developing systematic quantitative measurements to allow comparisons of impacts across alien species, sites, and time.
Resumo:
Invasive alien aquatic species, including marine and freshwater macroinvertebrates, have become increasingly important in terms of both environmental and socio-economic impacts. In order to assess their environmental and economic costs, we applied the Generic Impact Scoring System (GISS) and performed a comparison with other taxa of invaders in Europe. Impacts were scored into six environmental and six socio-economic categories, with each category containing five impact levels. Among 49 aquatic macroinvertebrates, the most impacting species were the Chinese mitten crab, Eriocheir sinensis (Milne-Edwards, 1853) and the zebra mussel, Dreissena polymorpha (Pallas, 1771). The highest impacts found per GISS impact category were, separately; on ecosystems, through predation, as competitors, and on animal production. Eleven species have an impact score > 10 (high impact) and seven reach impact level 5 in at least one impact category (EU blacklist candidates), the maximum score that can be given is 60 impact points. Comparisons were drawn between aquatic macroinvertebrates and vertebrate invaders such as fish, mammals and birds, as well as terrestrial arthropods, revealing invasive freshwater macroinvertebrates to be voracious predators of native prey and damaging to native ecosystems compared with other taxa. GISS can be used to compare these taxa and will aid policy making and targeting of invasive species for management by relevant agencies, or to assist in producing species blacklist candidates.
Resumo:
In November 2014, a new EU Regulation to address Invasive Alien Species (IAS) and protect biodiversity was published. This entered into force across the EU in January 2015. The aim of the Regulation is to ‘prevent the introduction of, control or eradicate alien species which threaten ecosystems, habitats or species’. In an effort to provide focus to the Regulation prior to its publishing and to identify the major issues relating to Invasive Alien Species in Europe, the views of invasive species experts from around the world were sought. These were consolidated at an international conference (Freshwater Invasives - Networking for Strategy (FINS)) that was held in Ireland in April 2013. A major outcome from this meeting of experts was the production of the Top 20 IAS issues that relate primarily to freshwater habitats but are also directly relevant to marine and terrestrial ecosystems. This list will support policy makers throughout the EU as preparations are made to implement this important piece of legislation. A further outcome from the conference was the formation of an expert IAS Advisory Group to support EIFAAC in its work on invasive species
Resumo:
The impact of invasive bank vole (Myodes glareolus) and greater white-toothed shrew (Crocidura russula) on indigenous Irish small mammals, varies with season and habitat. We caught bank voles in deciduous woodland, young coniferous plantations and open habitats such as rank grass. The greater white-toothed shrew was absent from deciduous woods and plantations but did use open habitats with low level cover in addition to field margins. Numbers of both invasive species in field margins during summer were higher than in the previous spring. The indigenous wood mouse (Apodemus sylvaticus) and pygmy shrew (Sorex minutus), differed in degrees of negative response to invasive species. Wood mice with bank voles in hedgerows had reduced recruitment and lower peak abundance. This effect was less extreme where both invasive species were present. Wood mice numbers along field margins and open habitats were significantly depressed by the presence of the bank vole with no such effect in deciduous woodland or coniferous plantations. Summer recruitment in pygmy shrews was reduced in hedgerows with bank voles. Where greater white-toothed shrew was present, the pygmy shrew was entirely absent from field margins. Species replacement due to invasive small mammals is occurring in their major habitat i.e. field margins and open habitats where there is good ground cover. Pygmy shrew will probably disappear from these habitats throughout Ireland. Wood mice and possibly pygmy shrew may survive in deciduous woodland and conifer plantations. Mitigation of impacts of invasive species should include expansion of woodland in which native species can survive.
Resumo:
Understanding determinants of the invasiveness and ecological impacts of alien species is amongst the most sought-after and urgent research questions in ecology. Several studies have shown the value of comparing the functional responses (FRs) of alien and native predators towards native prey, however, the technique is under-explored with herbivorous alien species and as a predictor of invasiveness as distinct from ecological impact. Here, in China, we conducted a mesocosm experiment to compare the FRs among three herbivorous snail species: the golden apple snail, Pomacea canaliculata, a highly invasive and high impact alien listed in “100 of the World's Worst Invasive Alien Species”; Planorbarius corneus, a non-invasive, low impact alien; and the Chinese native snail, Bellamya aeruginosa, when feeding on four locally occurring plant species. Further, by using a numerical response equation, we modelled the population dynamics of the snail consumers. For standard FR parameters, we found that the invasive and damaging alien snail had the highest “attack rates” a, shortest “handling times” h and also the highest estimated maximum feeding rates, 1/hT, whereas the native species had the lowest attack rates, longest handling times and lowest maximum feeding rates. The non-invasive, low impact alien species had consistently intermediate FR parameters. The invasive alien species had higher population growth potential than the native snail species, whilst that of the non-invasive alien species was intermediate. Thus, while the comparative FR approach has been proposed as a reliable method for predicting the ecological impacts of invasive predators, our results further suggest that comparative FRs could extend to predict the invasiveness and ecological impacts of alien herbivores and should be explored in other taxa and trophic groups to determine the general utility of the approach.
Resumo:
The spread of nonindigenous species into new habitats is having a drastic effect on natural ecosystems and represents an increasing threat to global biodiversity. In the marine environment, where data on the movement of invasive species is scarce, the spread of alien seaweeds represents a particular problem. We have employed a combination of plastid microsatellite markers and DNA sequence data from three regions of the plastid genome to trace the invasive history of the green alga Codium fragile ssp. tomentosoides. Extremely low levels of genetic variation were detected, with only four haplotypes present in the species’ native range in Japan and only two of these found in introduced populations. These invasive populations displayed a high level of geographical structuring of haplotypes, with one haplotype localized in the Mediterranean and the other found in Northwest Atlantic, northern European and South Pacific populations. Consequently, we postulate that there have been at least two separate introductions of C. fragile ssp. tomentosoides from its native range in the North Pacific.
Resumo:
In Europe, the last 20 years have seen a spectacular increase in accidental introductions of marine species, but it has recently been suggested that both the actual number of invaders and their impacts have been seriously underestimated because of the prevalence of sibling species in marine habitats. The red alga Polysiphoniaharveyi is regarded as an alien in the British Isles and Atlantic Europe, having appeared in various locations there during the past 170 years. Similar or conspecific populations are known from Atlantic North America and Japan. To choose between three competing hypotheses concerning the origin of P. harveyi in Europe, we employed rbcL sequence analysis in conjunction with karyological and interbreeding data for samples and isolates of P. harveyi and various congeners from the Pacific and North Atlantic Oceans. All cultured isolates of P. harveyi were completely interfertile, and there was no evidence of polyploidy or aneuploidy. Thus, this biological species is both morphologically and genetically variable: intraspecific rbcL divergences of up to 2.1% are high even for red algae. Seven rbcL haplotypes were identified. The four most divergent haplotypes were observed in Japanese samples from Hokkaido and south-central Honshu, which are linked by hypothetical 'missing' haplotypes that may be located in northern Honshu. These data are consistent with Japan being the centre of diversity and origin for P. harveyi. Two non-Japanese lineages were linked to Hokkaido and Honshu, respectively. A single haplotype was found in all North Atlantic and Mediterranean accessions, except for North Carolina, where the haplotype found was the same as that invading in New Zealand and California. The introduction of P. harveyi into New Zealand has gone unnoticed because P. strictissima is a morphologically indistinguishable native sibling species. The sequence divergence between them is 4–5%, greater than between some morphologically distinct red algal species. Two different types of cryptic invasions of P. harveyi have therefore occurred. In addition to its introduction as a cryptic sibling species in New Zealand, P. harveyi has been introduced at least twice into the North Atlantic from presumed different source populations. These two introductions are genetically and probably also physiologically divergent but completely interfertile.
Resumo:
Evolutionary conflicts among social hymenopteran nestmates are theoretically likely to arise over the production of males and the sex ratio. Analysis of these conflicts has become an important focus of research into the role of kin selection in shaping social traits of hymenopteran colonies. We employ microsatellite analysis of nestmates of one social hymenopteran, the primitively eusocial and monogynous bumblebee Bombus hypnorum, to evaluate these conflicts. In our 14 study colonies, B. hypnorum queens mated between one and six times (arithmetic mean 2.5). One male generally predominated, fathering most of the offspring, thus the effective number of matings was substantially lower (1–3.13; harmonic mean 1.26). In addition, microsatellite analysis allowed the detection of alien workers, those who could not have been the offspring of the queen, in approximately half the colonies. Alien workers within the same colony were probably sisters. Polyandry and alien workers resulted in high variation among colonies in their sociogenetic organization. Genetic data were consistent with the view that all males (n = 233 examined) were produced by a colony’s queen. Male parentage was therefore independent of the sociogenetic organization of the colony, suggesting that the queen, and not the workers, was in control of the laying of male-destined eggs. The population-wide sex ratio (fresh weight investment ratio) was weakly female biased. No evidence for colony-level adaptive sex ratio biasing could be detected.