2 resultados para Algebraic and analytic reversibility


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider Sklyanin algebras $S$ with 3 generators, which are quadratic algebras over a field $\K$ with $3$ generators $x,y,z$ given by $3$ relations $pxy+qyx+rzz=0$, $pyz+qzy+rxx=0$ and $pzx+qxz+ryy=0$, where $p,q,r\in\K$. this class of algebras has enjoyed much attention. In particular, using tools from algebraic geometry, Feigin, Odesskii \cite{odf}, and Artin, Tate and Van Den Bergh, showed that if at least two of the parameters $p$, $q$ and $r$ are non-zero and at least two of three numbers $p^3$, $q^3$ and $r^3$ are distinct, then $S$ is Artin--Schelter regular. More specifically, $S$ is Koszul and has the same Hilbert series as the algebra of commutative polynomials in 3 indeterminates (PHS). It has became commonly accepted that it is impossible to achieve the same objective by purely algebraic and combinatorial means like the Groebner basis technique. The main purpose of this paper is to trace the combinatorial meaning of the properties of Sklyanin algebras, such as Koszulity, PBW, PHS, Calabi-Yau, and to give a new constructive proof of the above facts due to Artin, Tate and Van Den Bergh. Further, we study a wider class of Sklyanin algebras, namely
the situation when all parameters of relations could be different. We call them generalized Sklyanin algebras. We classify up to isomorphism all generalized Sklyanin algebras with the same Hilbert series as commutative polynomials on
3 variables. We show that generalized Sklyanin algebras in general position have a Golod–Shafarevich Hilbert series (with exception of the case of field with two elements).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solving microkinetics of catalytic systems, which bridges microscopic processes and macroscopic reaction rates, is currently vital for understanding catalysis in silico. However, traditional microkinetic solvers possess several drawbacks that make the process slow and unreliable for complicated catalytic systems. In this paper, a new approach, the so-called reversibility iteration method (RIM), is developed to solve microkinetics for catalytic systems. Using the chemical potential notation we previously proposed to simplify the kinetic framework, the catalytic systems can be analytically illustrated to be logically equivalent to the electric circuit, and the reaction rate and coverage can be calculated by updating the values of reversibilities. Compared to the traditional modified Newton iteration method (NIM), our method is not sensitive to the initial guess of the solution and typically requires fewer iteration steps. Moreover, the method does not require arbitrary-precision arithmetic and has a higher probability of successfully solving the system. These features make it ∼1000 times faster than the modified Newton iteration method for the systems we tested. Moreover, the derived concept and the mathematical framework presented in this work may provide new insight into catalytic reaction networks.