74 resultados para Aleph Version 16
Resumo:
Background: Most recently fertility issues in HIV positive men and women are becoming increasingly important. Because of ART access and its good life effect, it is expected that the need and desire to get married, to have children and to have sexual partners for PLWHA would change with the regard to reproductive health. In Ethiopia HIV positive individuals may or may not have desire to have children. And the extent of this desire and how it varies by individual, health and demographic characteristics is not well known.
Objective: the aim of the study was to assess desire for fertility and associated factors among PLWHA in selected ART clinics of Horro Guduru Wollega Zone, Oromia National Regional State, Ethiopia.
Methods: A cross-sectional, institutional-based study that employed quantitative and qualitative in-depth interviews was conducted. Three hundred twenty one study subjects were selected using systematic random sampling technique and the data was collected using interviewer administered structured questionnaire. Data entry and analysis were performed using EPI Info version 3.5.1 and SPSS version 16. P-value <0.05 was taken as statistically significant and logistic regression was used to control potential confounding factors.
Results: Seventy three (57.9%) of the males and seventy six (39%) of the females desired to have children, giving a total of 149(46.4%) of all study participants. PLWHA who desired children were younger (AOR:3.3, 95%CI: 1.3-8.9), married (AOR: 5.8, 95%CI: 2.7-12.8), had no children (AOR: 75, 95%CI: 20.1-273.3) and males (AOR; 1.9, 95%CI: 1.02-3.62) compared with their counter parts. The major reason for those people who did not desire children were having desired number of children 80 (46.5%) followed by fear of HIV transmission to child reported by 42 (24.4%) of them.
Conclusion: A considerable number of PLWHA wants to have a child currently or in the near future. Many variables like socio demography, partner related, number of alive children and HIV related disease condition were significantly associated with fertility desire.
Resumo:
An alternative models framework was used to test three confirmatory factor analytic models for the Short Leyton Obsessional Inventory-Children's Version (Short LOI-CV) in a general population sample of 517 young adolescent twins (11-16 years). A one-factor model as implicit in current classification systems of Obsessive-Compulsive Disorder (OCD), a two-factor obsessions and compulsions model, and a multidimensional model corresponding to the three proposed subscales of the Short LOI-CV (labelled Obsessions/Incompleteness, Numbers/Luck and Cleanliness) were considered. The three-factor model was the only model to provide an adequate explanation of the data. Twin analyses suggested significant quantitative sex differences in heritability for both the Obsessions/Incompleteness and Numbers/Luck dimensions with these being significantly heritable in males only (heritability of 60% and 65% respectively). The correlation between the additive genetic effects for these two dimensions in males was 0.95 suggesting they largely share the same genetic risk factors.
Resumo:
A FORTRAN 90 program is presented which calculates the total cross sections, and the electron energy spectra of the singly and doubly differential cross sections for the single target ionization of neutral atoms ranging from hydrogen up to and including argon. The code is applicable for the case of both high and low Z projectile impact in fast ion-atom collisions. The theoretical models provided for the program user are based on two quantum mechanical approximations which have proved to be very successful in the study of ionization in ion-atom collisions. These are the continuum-distorted-wave (CDW) and continuum-distorted-wave eikonal-initial-state (CDW-EIS) approximations. The codes presented here extend previously published. codes for single ionization of. target hydrogen [Crothers and McCartney, Comput. Phys. Commun. 72 (1992) 288], target helium [Nesbitt, O'Rourke and Crothers, Comput. Phys. Commun. 114 (1998) 385] and target atoms ranging from lithium to neon [O'Rourke, McSherry and Crothers, Comput. Phys. Commun. 131 (2000) 129]. Cross sections for all of these target atoms may be obtained as limiting cases from the present code. Title of program: ARGON Catalogue identifier: ADSE Program summary URL: http://cpc.cs.qub.ac.uk/cpc/summaries/ADSE Program obtainable from: CPC Program Library Queen's University of Belfast, N. Ireland Licensing provisions: none Computer for which the program is designed and others on which it is operable: Computers: Four by 200 MHz Pro Pentium Linux server, DEC Alpha 21164; Four by 400 MHz Pentium 2 Xeon 450 Linux server, IBM SP2 and SUN Enterprise 3500 Installations: Queen's University, Belfast Operating systems under which the program has been tested: Red-hat Linux 5.2, Digital UNIX Version 4.0d, AIX, Solaris SunOS 5.7 Compilers: PGI workstations, DEC CAMPUS Programming language used: FORTRAN 90 with MPI directives No. of bits in a word: 64, except on Linux servers 32 Number of processors used: any number Has the code been vectorized or parallelized? Parallelized using MPI No. of bytes in distributed program, including test data, etc.: 32 189 Distribution format: tar gzip file Keywords: Single ionization, cross sections, continuum-distorted-wave model, continuum- distorted-wave eikonal-initial-state model, target atoms, wave treatment Nature of physical problem: The code calculates total, and differential cross sections for the single ionization of target atoms ranging from hydrogen up to and including argon by both light and heavy ion impact. Method of solution: ARGON allows the user to calculate the cross sections using either the CDW or CDW-EIS [J. Phys. B 16 (1983) 3229] models within the wave treatment. Restrictions on the complexity of the program: Both the CDW and CDW-EIS models are two-state perturbative approximations. Typical running time: Times vary according to input data and number of processors. For one processor the test input data for double differential cross sections (40 points) took less than one second, whereas the test input for total cross sections (20 points) took 32 minutes. Unusual features of the program: none (C) 2003 Elsevier B.V All rights reserved.
Resumo:
Human papillomavirus type 16 proteins E6 and E7 have been shown to cause centrosome amplification and lagging chromosomes during mitosis. These abnormalities during mitosis can result in missegregation of the chromosomes, leading to chromosomal instability. Genomic instability is thought to be an essential part of the conversion of a normal cell to a cancer cell. We now show that E6 and E7 together cause polyploidy in primary human keratinocytes soon after these genes are introduced into the cells. Polyploidy seems to result from a spindle checkpoint failure arising from abrogation of the normal functions of p53 and retinoblastoma family members by E6 and E7, respectively. In addition, E6 and E7 cause deregulation of cellular genes such as Plk1, Aurora-A, cdk1, and Nek2, which are known to control the G2-M-phase transition and the ordered progression through mitosis.
Resumo:
Cancer cells are insensitive to many signals that inhibit growth of untransformed cells. Here, we show that primary human epithelial cells expressing human papillomavirus (HPV) type-16 E6/E7 bypass arrest caused by the DNA-damaging drug adriamycin and become tetraploid. To determine the contribution of E6 in the context of E7 to the resistance of arrest and induction of tetraploidy, we used an E6 mutant unable to degrade p53 or RNAi targeting p53 for knockdown. The E6 mutant fails to generate tetraploidy; however, the presence of E7 is sufficient to bypass arrest while the p53 RNAi permits both arrest insensitivity and tetraploidy. We published previously that polo-like kinase 1 (Plk1) is upregulated in E6/E7-expressing cells. We observe here that abnormal expression of Plk1 protein correlates with tetraploidy. Using the p53 binding-defective mutant of E6 and p53 RNAi, we show that p53 represses Plk1, suggesting that loss of p53 results in tetraploidy through upregulation of Plk1. Consistent with this hypothesis, overexpression of Plk1 in cells generates tetraploidy but does not confer resistance to arrest. These results support a model for transformation caused by HPV-16 where bypass of arrest and tetraploidy are separable consequences of p53 loss with Plk1 required only for the latter effect.