150 resultados para Airway
Resumo:
Background: Exhaled nitric oxide has been proposed as a marker for airway inflammation in asthma. The aim of this study was to compare exhaled nitric oxide levels with inflammatory cells and mediators in bronchoalveolar lavage fluid from asthmatic and normal children.
Methods: Children were recruited from elective surgical lists and a non-bronchoscopic bronchoalveolar lavage (BAL) was performed after induction of anaesthesia. Exhaled nitric oxide (parts per billion) was measured by two techniques: tidal breathing and restricted breath.
Results: Median (interquartile range) exhaled nitric oxide measured by restricted breath was increased in asthmatics compared with normal children (24.3 (10.5–66.5) v 9.7 (6.5–16.5), difference between medians 14.6 (95% CI 5.1 to 29.9), p=0.001). In asthmatic children exhaled nitric oxide correlated significantly with percentage eosinophils (r=0.78, p<0.001 (tidal breathing) and r=0.78, p<0.001 (restricted breath)) and with eosinophilic cationic protein (r=0.53, p<0.01 restricted breath)), but not with other inflammatory cells in the BAL fluid. The area under the receiver operator characteristic curves for the prediction of the presence of eosinophilic airways inflammation by exhaled nitric oxide (tidal and restricted) was 0.80 and 0.87, respectively.
Conclusions: Exhaled nitric oxide correlates closely with percentage eosinophils in BAL fluid in asthmatic children and is therefore likely to be a useful non-invasive marker of airway inflammation.
Resumo:
Background Childhood asthma is characterized by inflammation of the airways. Structural changes of the airway wall may also be seen in some children early in the course of the disease. Matrix metalloproteinases (MMPs) are key mediators in the metabolism of the extracellular matrix (ECM). Objective To investigate the balance of MMP-8, MMP-9 and tissue inhibitor of metalloproteinases (TIMP)-1 in the airways of children with asthma. Methods One hundred and twenty-four children undergoing elective surgical procedures also underwent non-bronchoscopic bronchoalveolar lavage (BAL). MMP-8, MMP-9 and TIMP-1 were measured by ELISA. Results There was a significant reduction in MMP-9 in atopic asthmatic children (n=31) compared with normal children (n=30) [median difference: 0.57 ng/mL (95% confidence interval: 0.18–1.1 ng/mL)]. The ratio of MMP-9 to TIMP-1 was also reduced in asthmatic children. Levels of all three proteins were significantly correlated to each other and to the relative proportions of particular inflammatory cells in BAL fluid (BALF). Both MMP-8 and MMP-9 were moderately strongly correlated to the percentage neutrophil count (r=0.40 and 0.47, respectively, P
Resumo:
Ascorbic acid (AA) is thought to be an important antioxidant in the respiratory tract, whose regulation is yet to be fully characterized. We investigated whether AA in respiratory tract lining fluids (RTLFs) can be augmented by oral supplementation with AA. Plasma, nasal lavage fluids (NLFs), induced sputum (IS), and saliva were analyzed for AA immediately before and 2 h after ingestion of 2 g of AA in 13 healthy subjects. Concentrations of AA (median and range) were 52.5 (16.0-88.5), 2.4 (0.18-4.66), 2.4 (0.18-6.00), and 0.55 (0.18-18.90) micromol/l, respectively. Two hours after ingestion of AA, plasma AA increased 2-fold (p = .004), NLF AA increased 3-fold (p = .039), but IS and saliva AA did not increase. As AA concentrations in saliva and tracheobronchial secretions were low compared with other common extracellular components (such as urate), we evaluated the fate of AA in these fluids. Addition of AA to freshly obtained saliva or IS resulted in rapid depletion, which could be largely prevented or reversed by sodium azide or dithiothreitol. These findings suggest that oxidant-producing systems in saliva and airway secretions, such as heme peroxidases and other oxidizing substances, rapidly consume AA. Whereas oral supplementation resulted in detectable increases of AA in NLFs, its levels in tracheobronchial lining fluid, as measured by IS, were unaffected and remained relatively low, suggesting that AA may play a less significant antioxidant role in this compartment as compared with most other extracellular compartments.