101 resultados para Air bases
Evaluating the air-cycle as a refrigerant free alternative for temperature controlled road transport
Resumo:
The performance of an air-cycle refrigeration unit for road transport, which had been previously reported, was analysed in detail and compared with the original design model and an equivalent Thermo King SL200 vapour-cycle refrigeration unit. Poor heat exchanger performance was found to be the major contributor to low coefficient of performance values. Using state-of-the-art, but achievable performance levels for turbomachinery and heat exchangers, the performance of an optimised air-cycle refrigeration unit for the same application was predicted. The power requirement of the optimised air-cycle unit was 7% greater than the equivalent vapour-cycle unit at full-load operation. However, at part-load operation the air-cycle unit was estimated to absorb 35% less power than the vapour-cycle unit. The analysis demonstrated that the air-cycle system could potentially match the overall fuel consumption of the vapour-cycle transport refrigeration unit, while delivering the benefit of a completely refrigerant free system.
Resumo:
The environmental attractions of air-cycle refrigeration are considerable. Following a thermodynamic design analysis, an air-cycle demonstrator plant was constructed within the restricted physical envelope of an existing Thermo King SL200 trailer refrigeration unit. This unique plant operated satisfactorily, delivering sustainable cooling for refrigerated trailers using a completely natural and safe working fluid. The full load capacity of the air-cycle unit at -20 °C was 7,8 kW, 8% greater than the equivalent vapour-cycle unit, but the fuel consumption of the air-cycle plant was excessively high. However, at part load operation the disparity in fuel consumption dropped from approximately 200% to around 80%. The components used in the air-cycle demonstrator were not optimised and considerable potential exists for efficiency improvements, possibly to the point where the air-cycle system could rival the efficiency of the standard vapour-cycle system at part-load operation, which represents the biggest proportion of operating time for most units.
Resumo:
This paper describes an experimental investigation into the surface heat transfer coefficient of finned metal cylinders in a free air stream. Eight cast aluminium alloy cylinders were tested with four different fin pitches and five different fin lengths. The cylinders and their fins were designed to be representative of those found on a motorcycle engine. Each electrically heated cylinder was mounted in a wind tunnel and subjected to a range of air speeds between 2 and 20 m/s. The surface heat transfer coefficient, h, was found primarily to be a function of the air speed and the fin separation, with fin length having a lesser effect. The coefficient increases with airspeed and as the fins are separated or shortened. It was also noted that a limiting value of coefficient exists, influenced only by airspeed. Above the limiting value the surface heat transfer could not be increased by further separation of the fins or reduction in their length.