51 resultados para Affine Spaces Over Finite Fields
Resumo:
We prove an analogue of Magnus theorem for associative algebras without unity over arbitrary fields. Namely, if an algebra is given by $n+k$ generators and $k$ relations and has an $n$-element system of generators, then this algebra is a free algebra of rank $n$.
Resumo:
The reduced unitary Whitehead group $\SK$ of a graded division algebra equipped with a unitary involution (i.e., an involution of the second kind) and graded by a torsion-free abelian group is studied. It is shown that calculations in the graded setting are much simpler than their nongraded counterparts. The bridge to the non-graded case is established by proving that the unitary $\SK$ of a tame valued division algebra wih a unitary involution over a henselian field coincides with the unitary $\SK$ of its associated graded division algebra. As a consequence, the graded approach allows us not only to recover results available in the literature with substantially easier proofs, but also to calculate the unitary $\SK$ for much wider classes of division algebras over henselian fields.
Resumo:
According to the Mickael's selection theorem any surjective continuous linear operator from one Fr\'echet space onto another has a continuous (not necessarily linear) right inverse. Using this theorem Herzog and Lemmert proved that if $E$ is a Fr\'echet space and $T:E\to E$ is a continuous linear operator such that the Cauchy problem $\dot x=Tx$, $x(0)=x_0$ is solvable in $[0,1]$ for any $x_0\in E$, then for any $f\in C([0,1],E)$, there exists a continuos map $S:[0,1]\times E\to E$, $(t,x)\mapsto S_tx$ such that for any $x_0\in E$, the function $x(t)=S_tx_0$ is a solution of the Cauchy problem $\dot x(t)=Tx(t)+f(t)$, $x(0)=x_0$ (they call $S$ a fundamental system of solutions of the equation $\dot x=Tx+f$). We prove the same theorem, replacing "continuous" by "sequentially continuous" for locally convex spaces from a class which contains strict inductive limits of Fr\'echet spaces and strong duals of Fr\'echet--Schwarz spaces and is closed with respect to finite products and sequentially closed subspaces. The key-point of the proof is an extension of the theorem on existence of a sequentially continuous right inverse of any surjective sequentially continuous linear operator to some class of non-metrizable locally convex spaces.
Resumo:
We prove that for any finite ultrametric space M and any infinite-dimensional Banach space B there exists an isometric embedding of M into B.
Resumo:
In this work we present the theoretical framework for the solution of the time-dependent Schrödinger equation (TDSE) of atomic and molecular systems under strong electromagnetic fields with the configuration space of the electron’s coordinates separated over two regions; that is, regions I and II. In region I the solution of the TDSE is obtained by an R-matrix basis set representation of the time-dependent wave function. In region II a grid representation of the wave function is considered and propagation in space and time is obtained through the finite-difference method. With this, a combination of basis set and grid methods is put forward for tackling multiregion time-dependent problems. In both regions, a high-order explicit scheme is employed for the time propagation. While, in a purely hydrogenic system no approximation is involved due to this separation, in multielectron systems the validity and the usefulness of the present method relies on the basic assumption of R-matrix theory, namely, that beyond a certain distance (encompassing region I) a single ejected electron is distinguishable from the other electrons of the multielectron system and evolves there (region II) effectively as a one-electron system. The method is developed in detail for single active electron systems and applied to the exemplar case of the hydrogen atom in an intense laser field.
Resumo:
Injection stretch blow moulding is a well-established method of forming thin-walled containers and has been extensively researched for numerous years. This paper is concerned with validating the finite element analysis of the free-stretch-blow process in an effort to progress the development of injection stretch blow moulding of poly(ethylene terephthalate). Extensive data was obtained experimentally over a wide process window accounting for material temperature and air flow rate, while capturing cavity pressure, stretch-rod reaction force and preform surface strain. This data was then used to assess the accuracy of the correlating FE simulation constructed using ABAQUS/Explicit solver and an appropriate viscoelastic material subroutine. Results reveal that the simulation is able to give good quantitative correlation for conditions where the deformation was predominantly equal biaxial whilst qualitative correlation was achievable when the mode of deformation was predominantly sequential biaxial. Overall the simulation was able to pick up the general trends of how the pressure, reaction force, strain rate and strain vary with the variation in preform temperature and air flow rate. The knowledge gained from these analyses provides insight into the mechanisms of bottle formation, subsequently improving the blow moulding simulation and allowing for reduction in future development costs.
Resumo:
Let L be a unital Z-graded ring, and let C be a bounded chain complex of finitely generated L-modules. We give a homological characterisation of when C is homotopy equivalent to a bounded complex of finitely generated projective L0-modules, generalising known results for twisted Laurent polynomial rings. The crucial hypothesis is that L is a strongly graded ring.
Resumo:
Photometric transit surveys promise to complement the currently known sample of extra-solar planets (ESPs) by providing additional information on the planets and especially their radii. Here, we present ESP candidates from one such survey called, the Wide Angle Search for Planets (WASP) obtained with the SuperWASP wide-field imaging system. Observations were taken with SuperWASP North located in La Palma during the 2004 April to October observing season. The data cover fields between 23 and 03 h in RA at declinations above +12. This amounts to over ~400000 stars with V magnitudes 8-13.5. For the stars brighter than 12.5, we achieve better than 1 per cent photometric precision. Here, we present 41 sources with low-amplitude variability between ~1 and 10 mmag, from which we select 12 with periods between 1.2 and 4.4 d as the most promising ESP candidates. We discuss the properties of these ESP candidates, the expected fraction of transits recovered for our sample and implications for the frequency and detection of hot-Jupiters.
Resumo:
An effective frozen core approximation has been developed and applied to the calculation of energy levels and ionization energies of the beryllium atom in magnetic field strengths up to 2.35 x 10(5) T. Systematic improvement over the existing results for the beryllium ground and low-lying states has been accomplished by taking into account most of the correlation effects in the four-electron system. To our knowledge, this is the first calculation of the electronic properties of the beryllium atom in a strong magnetic field carried out using a configuration interaction approximation and thus allowing a treatment beyond that of Hartree-Fock. Differing roles played by strong magnetic fields in intrashell correlation within different states are observed. In addition, possible ways to gain further improvement in the energies of the states of interest are proposed and discussed briefly.
Resumo:
Accurate and efficient grid based techniques for the solution of the time-dependent Schrodinger equation for few-electron diatomic molecules irradiated by intense, ultrashort laser pulses are described. These are based on hybrid finite-difference, Lagrange mesh techniques. The methods are applied in three scenarios, namely H-2(+) with fixed internuclear separation, H-2(+) with vibrating nuclei and H-2 with fixed internuclear separation and illustrative results presented.
Resumo:
The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium, the hydrogen atom and the hydrogen molecular ion are presented. At very high laser intensity, above the saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments. (C) 2004 American Institute of Physics.
Resumo:
In a recent Letter to the Editor (J Rao, D Delande and K T Taylor 2001 J. Phys. B: At. Mol. Opt. Phys. 34 L391-9) we made a brief first report of our quantal and classical calculations for the hydrogen atom in crossed electric and magnetic fields at constant scaled energy and constant scaled electric field strength. A principal point of that communication was our statement that each and every peak in the Fourier transform of the scaled quantum photo-excitation spectrum for scaled energy value epsilon = -0.586 538 871028 43 and scaled electric value (f) over tilde = 0.068 537 846 207 618 71 could be identified with a scaled action value of a found and mapped-out closed orbit up to a scaled action of 20. In this follow-up paper, besides presenting full details of our quantum and classical methods, we set out the scaled action values of all 317 closed orbits involved, together with the geometries of many.