42 resultados para Advanced Oxidation Processes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of the fuel oxygenate methyl tert-butyl ether (MTBE) in the environment has received considerable scientific attention. The pollutant is frequently found in the groundwater due to leaking of underground storage tanks or pipelines. Concentrations of more than several mg/L MTBE were detected in groundwater at several places in the US and Germany in the last few years. In situ chemical oxidation is a promising treatment method for MTBE-contaminated plumes. This research investigated the reaction kinetics for the oxidation of MTBE by permanganate. Batch tests demonstrated that the oxidation of MTBE by permanganate is second order overall and first order individually with respect to permanganate and MTBE. The second-order rate constant was 1.426 x 10(-6) L/mg/h. The influence of pH on the reaction rate was demonstrated to have no significant effect. However, the rate of MTBE oxidation by potassium permanganate is 2-3 orders of magnitude lower than of other advanced oxidation processes. The slower rates of MTBE oxidation by permanganate limit the applicability of this process for rapid MTBE cleanup strategies. However, permanganate oxidation of MTBE has potential for passive oxidation risk management strategies. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microcystins and nodularin are toxic cyanobacterial secondary metabolites produced by cyanobacteria that pose a threat to human health in drinking water. Conventional water treatment methods often fail to remove these toxins. Advanced oxidation processes such as TiO2 photocatalysis have been shown to effectively degrade these compounds. A particular issue that has limited the widespread application of TiO2 photocatalysis for water treatment has been the separation of the nanoparticulate power from the treated water. A novel catalyst format, TiO2 coated hollow glass spheres (Photospheres™), is far more easily separated from treated water due to its buoyancy. This paper reports the photocatalytic degradation of eleven microcystin variants and nodularin in water using Photospheres™. It was found that the Photospheres™ successfully decomposed all compounds in 5 minutes or less. This was found to be comparable to the rate of degradation observed using a Degussa P25 material, which has been previously reported to be the most efficient TiO2 for photocatalytic degradation of microcystins in water. Furthermore, it was observed that the degree of initial catalyst adsorption of the cyanotoxins depended on the amino acid in the variable positions of the microcystin molecule. The fastest degradation (2 minutes) was observed for the hydrophobic variants (microcystin-LY, -LW, -LF). Suitability of UV-LEDs as an alternative low energy light source was also evaluated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The novel ligand 4'-diferrocenylallcyne-2,2':6',2 ''-terpyridine (7; Fc-C C-Fc-tpy; tpy = terpyridyl; Fc = ferrocenyl) and its Ru2+ complexes 8-10 have been synthesized and characterized by single-crystal X-ray diffraction, cyclic voltammetry, and UV-vis and luminescence spectroscopy. Electrochemical data and UV absorption and emission spectra indicate that the insertion of an ethynyl group causes delocalization of electrons in the extended pi* orbitals. Cyclic voltammetric measurements of 7 show two successive reversible one-electron-oxidation processes with half-wave potentials of 0.53 and 0.78 V. The small variations of the E-1/2 values for the Fe2+/Fe3+ redox couples after the coordination of the Ru2+ ion suggest a weak interaction between the Ru2+ and Fe2+ centers. After insertion of an ethynyl group, UV-vis absorption spectra show a red shift of the absorption peak of the (1)[(d(pi)(Fe))(6)]->(1)[(d(pi)(Fe))(5)(pi*(Ru)(tpy))(1)] MMLCT of the Ru2+ complexes. The Ru2+ complex 8 exhibits the strongest luminescence intensity (lambda(em)(max) 712 nm, Phi(em) = 2.63 x 10(-4), tau = 323 ns) relative to analogous ferrocene-based terpyridine Ru(II) complexes in H2O/CH3CN (4/1 v/v) solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The kinetics of dye reduction, in photocatalyst indicator ink films on self cleaning glass, is studied with respect to dye concentration. The water-based, photocatalyst indicator inks comprised a redox dye, D-ox, a sacrificial electron donor (glycerol) and a polymer, hydroxyethyl cellulose. The dyes used were: Resazurin (Rz), dichloroindo-phenol (DCIP) and methylene blue (MB), although the latter required acidification of the ink (0.01M HCl) to make it work effectively under ambient conditions. Under anaerobic conditions, the photoreduction of each of the dyes, in an otherwise identical ink formulation, on Activ (TM) self-cleaning glass is zero-order with respect to [D-ox]. Seven commercial samples of Rz, each in a typical ink formulation, were tested on the same piece of self-cleaning glass under aerobic conditions and produced a striking range (over 280%) of different apparent activities for the glass, when there should have been none. The underlying cause of this variation in assessed activity is shown to be due to the combination of a variation in the purity of the commercial samples and the zero-order nature of the kinetics of indicator dye reduction. The relevance of this work and the latter observation, in particular to future use of these films for the rapid assessment of the activities of new and established photocatalytic films, is briefly discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geosmin is produced by cyanobacteria and actinomycetes in surface waters. It causes undesirable earthy off-flavours in freshwater fish and is a major concern for the drinking water industry. This paper presents the first published study on the use of the novel pelleted Ti02 photocatalyst, Hombikat K01/C, for the removal of geosmin from water. Ti02 in pelleted form eliminates the requirement for the separation of the catalyst from the water following treatment which is normally the case with the widely used powdered catalysts. A laboratory reactor was designed to limit system loss since the compound adsorbs to a wide range of surfaces. Initial concentration, aeration rate and irradiation were evaluated. It was found that degradation of geosmin followed the Langmuir-Hinshelwood model. Elevated aeration had no effect on the photocatalytic removal of geosmin, but increasing irradiation was found to increase degradation rates. The catalyst proved effective within 10 min under optimum conditions. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyanobacterial (blue-green algal) toxins are extremely toxic naturally occurring substances which display hepato- and neurotoxic behaviour (1, 2). In this paper we report the application of titanium dioxide photocatalysis for the destruction of two of these compounds, microcystin-LR and anatoxin-a. The destruction of microcystin appears to follow Langmuir-Hinshelwood kinetics although a discrepancy was observed between adsorption constants determined for the photocatalytic process with those obtained from dark isotherms. A square root dependence between illumination intensity and rate of microcystin destruction was noted. When the destruction was performed in the presence of the naturally occurring pigment it appeared that the pigment also contributes to the destruction of the toxin. Toxicity studies on the photocatalysed toxin solutions indicates that the toxicity is substantially reduced within 30 min photolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: A critical event in the pathogenesis of diabetic retinopathy is the inappropriate adherence of leukocytes to the retinal capillaries. Advanced glycation end-products (AGEs) are known to play a role in chronic inflammatory processes, and the authors postulated that these adducts may play a role in promoting pathogenic increases in proinflammatory pathways within the retinal microvasculature. METHODS: Retinal microvascular endothelial cells (RMECs) were treated with glycoaldehyde-modified albumin (AGE-Alb) or unmodified albumin (Alb). NFkappaB DNA binding was measured by electromobility shift assay (EMSA) and quantified with an ELISA: In addition, the effect of AGEs on leukocyte adhesion to endothelial cell monolayers was investigated. Further studies were performed in an attempt to confirm that this was AGE-induced adhesion by co-incubation of AGE-treated cells with soluble receptor for AGE (sRAGE). Parallel in vivo studies of nondiabetic mice assessed the effect of intraperitoneal delivery of AGE-Alb on ICAM-1 mRNA expression, NFkappaB DNA-binding activity, leukostasis, and blood-retinal barrier breakdown. RESULTS: Treatment with AGE-Alb significantly enhanced the DNA-binding activity of NFkappaB (P = 0.0045) in retinal endothelial cells (RMECs) and increased the adhesion of leukocytes to RMEC monolayers (P = 0.04). The latter was significantly reduced by co-incubation with sRAGE (P <0.01). Mice infused with AGE-Alb demonstrated a 1.8-fold increase in ICAM-1 mRNA when compared with control animals (P <0.001, n = 20) as early as 48 hours, and this response remained for 7 days of treatment. Quantification of retinal NFkappaB demonstrated a threefold increase with AGE-Alb infusion in comparison to control levels (AGE Alb versus Alb, 0.23 vs. 0.076, P <0.001, n = 10 mice). AGE-Alb treatment of mice also caused a significant increase in leukostasis in the retina (AGE-Alb versus Alb, 6.89 vs. 2.53, n = 12, P <0.05) and a statistically significant increase in breakdown of the blood-retinal barrier (AGE Alb versus Alb, 8.2 vs. 1.6 n = 10, P <0.001). CONCLUSIONS: AGEs caused upregulation of NFkappaB in the retinal microvascular endothelium and an AGE-specific increase in leukocyte adhesion in vitro was also observed. In addition, increased leukocyte adherence in vivo was demonstrated that was accompanied by blood-retinal barrier dysfunction. These findings add further evidence to the thinking that AGEs may play an important role in the pathogenesis of diabetic retinopathy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reviews the accumulated theoretical results, in particular density functional theory calculations, on two catalytic processes, CO oxidation and NO reduction on metal surfaces. Owing to their importance in automotive emission control, these two reactions have generated a lot of interest in the last 20 years. Here the pathways and energetics of the involved elementary reactions under different catalytic conditions are described in detail and the understanding of the reactions is generalized. It is concluded that density functional theory calculations can be applied to catalysis to elucidate mechanisms of complex surface reactions and to understand the electronic structure of chemical processes in general. The achieved molecular knowledge of chemical reactions is certainly beneficial to new catalyst design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim/Background Psychological models of behaviour change have been found to be useful in predicting health-related behaviour in patients but have rarely been used in relation to the health behaviour of staff. This study explored the association between a range of psychological variables and self-reported handwashing in a sample of nurses who work in a large general hospital. Method A questionnaire-based cross-sectional, correlational study was used. Questionnaires examining demographics, self-efficacy, perceived importance of handwashing, perception of risk, occupational stress and training related to handwashing were administered to an opportunity sample (n = 76) of nurses drawn from an acute hospital. ANOVAs, correlation and regression analyses were performed to determine significant covariates of handwashing behaviour. Findings There was a weak relationship between demographic variables and self-reported handwashing. The degree to which employees perceived their workplace to assist handwashing and perceived importance of handwashing were related to self-reported handwashing. Accordingly further covariates of these variables were sought. Training received and occupational stress both covaried with nurses’ perceptions of the degree to which their workplace assisted handwashing. Nurses’ beliefs regarding the transmission of infections covaried with perceived importance of handwashing. Conclusion Occupational stress was observed to reduce the perception of having a supportive employer: organisations need to facilitate handwashing and protect staff from factors that have a detrimental impact, such as work-related stress. Nurses’ perceived importance of the potential for poor handwashing practice to contribute to the transmission of infections should be highlighted in interventions.