4 resultados para Address analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A compositional multivariate approach is used to analyse regional scale soil geochemical data obtained as part of the Tellus Project generated by the Geological Survey Northern Ireland (GSNI). The multi-element total concentration data presented comprise XRF analyses of 6862 rural soil samples collected at 20cm depths on a non-aligned grid at one site per 2 km2. Censored data were imputed using published detection limits. Using these imputed values for 46 elements (including LOI), each soil sample site was assigned to the regional geology map provided by GSNI initially using the dominant lithology for the map polygon. Northern Ireland includes a diversity of geology representing a stratigraphic record from the Mesoproterozoic, up to and including the Palaeogene. However, the advance of ice sheets and their meltwaters over the last 100,000 years has left at least 80% of the bedrock covered by superficial deposits, including glacial till and post-glacial alluvium and peat. The question is to what extent the soil geochemistry reflects the underlying geology or superficial deposits. To address this, the geochemical data were transformed using centered log ratios (clr) to observe the requirements of compositional data analysis and avoid closure issues. Following this, compositional multivariate techniques including compositional Principal Component Analysis (PCA) and minimum/maximum autocorrelation factor (MAF) analysis method were used to determine the influence of underlying geology on the soil geochemistry signature. PCA showed that 72% of the variation was determined by the first four principal components (PC’s) implying “significant” structure in the data. Analysis of variance showed that only 10 PC’s were necessary to classify the soil geochemical data. To consider an improvement over PCA that uses the spatial relationships of the data, a classification based on MAF analysis was undertaken using the first 6 dominant factors. Understanding the relationship between soil geochemistry and superficial deposits is important for environmental monitoring of fragile ecosystems such as peat. To explore whether peat cover could be predicted from the classification, the lithology designation was adapted to include the presence of peat, based on GSNI superficial deposit polygons and linear discriminant analysis (LDA) undertaken. Prediction accuracy for LDA classification improved from 60.98% based on PCA using 10 principal components to 64.73% using MAF based on the 6 most dominant factors. The misclassification of peat may reflect degradation of peat covered areas since the creation of superficial deposit classification. Further work will examine the influence of underlying lithologies on elemental concentrations in peat composition and the effect of this in classification analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SYSTEMATIC REVIEW AND META-ANALYSIS: EFFECTS OF WALKING EXERCISE IN CHRONIC MUSCULOSKELETAL PAIN O'Connor S.R.1, Tully M.A.2, Ryan B.3, Baxter D.G.3, Bradley J.M.1, McDonough S.M.11University of Ulster, Health & Rehabilitation Sciences Research Institute, Newtownabbey, United Kingdom, 2Queen's University, UKCRC Centre of Excellence for Public Health (NI), Belfast, United Kingdom, 3University of Otago, Centre for Physiotherapy Research, Dunedin, New ZealandPurpose: To examine the effects of walking exercise on pain and self-reported function in adults with chronic musculoskeletal pain.Relevance: Chronic musculoskeletal pain is a major cause of morbidity, exerting a substantial influence on long-term health status and overall quality of life. Current treatment recommendations advocate various aerobic exercise interventions for such conditions. Walking may represent an ideal form of exercise due to its relatively low impact. However, there is currently limited evidence for its effectiveness.Participants: Not applicable.Methods: A comprehensive search strategy was undertaken by two independent reviewers according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) and the recommendations of the Cochrane Musculoskeletal Review Group. Six electronic databases (Medline, CINAHL, PsychINFO, PEDro, Sport DISCUS and the Cochrane Central Register of Controlled Trials) were searched for relevant papers published up to January 2010 using MeSH terms. All randomised or non-randomised studies published in full were considered for inclusion. Studies were required to include adults aged 18 years or over with a diagnosis of chronic low back pain, osteoarthritis or fibromyalgia. Studies were excluded if they involved peri-operative or post-operative interventions or did not include a comparative, non exercise or non-walking exercise control group. The U.S. Preventative Services Task Force system was used to assess methodological quality. Data for pain and self-reported function were extracted and converted to a score out of 100.Analysis: Data were pooled and analyzed using RevMan (v.5.0.24). Statistical heterogeneity was assessed using the X2 and I2 test statistics. A random effects model was used to calculate the mean differences and 95% CIs. Data were analyzed by length of final follow-up which was categorized as short (≤8 weeks post randomisation), mid (2-12 months) or long-term (>12 months).Results: A total of 4324 articles were identified and twenty studies (1852 participants) meeting the inclusion criteria were included in the review. Overall, studies were judged to be of at least fair methodological quality. The most common sources of likely bias were identified as lack of concealed allocation and failure to adequately address incomplete data. Data from 12 studies were suitable for meta-analysis. Walking led to reductions in pain at short (<8 weeks post randomisation) (-8.44 [-14.54, -2.33]) and mid-term (>8 weeks - 12 month) follow-up (-9.28 [-16.34, -2.22]). No effect was observed for long-term (>12 month) data (-2.49 [-7.62, 2.65]). For function, between group differences were observed for short (-11.57 [-16.06, -7.08]) and mid-term data (-13.26 [-16.91, -9.62]). A smaller effect was also observed at long-term follow-up (-5.60 [-7.70, -3.50]).Conclusions: Walking interventions were associated with statistically significant improvements in pain and function at short and mid-term follow-up. Long-term data were limited but indicated that these effects do not appear to be maintained beyond twelve months.Implications: Walking may be an effective form of exercise for individuals with chronic musculoskeletal pain. However, further research is required which examines longer term follow-up and dose-response issues in this population.Key-words: 1. Walking exercise 2. Musculoskeletal pain 3. Systematic reviewFunding acknowledgements: Department of Employment and Learning, Northern Ireland.Ethics approval: Not applicable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As one of the most successfully commercialized distributed energy resources, the long-term effects of microturbines (MTs) on the distribution network has not been fully investigated due to the complex thermo-fluid-mechanical energy conversion processes. This is further complicated by the fact that the parameter and internal data of MTs are not always available to the electric utility, due to different ownerships and confidentiality concerns. To address this issue, a general modeling approach for MTs is proposed in this paper, which allows for the long-term simulation of the distribution network with multiple MTs. First, the feasibility of deriving a simplified MT model for long-term dynamic analysis of the distribution network is discussed, based on the physical understanding of dynamic processes that occurred within MTs. Then a three-stage identification method is developed in order to obtain a piecewise MT model and predict electro-mechanical system behaviors with saturation. Next, assisted with the electric power flow calculation tool, a fast simulation methodology is proposed to evaluate the long-term impact of multiple MTs on the distribution network. Finally, the model is verified by using Capstone C30 microturbine experiments, and further applied to the dynamic simulation of a modified IEEE 37-node test feeder with promising results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Safety on public transport is a major concern for the relevant authorities. We
address this issue by proposing an automated surveillance platform which combines data from video, infrared and pressure sensors. Data homogenisation and integration is achieved by a distributed architecture based on communication middleware that resolves interconnection issues, thereby enabling data modelling. A common-sense knowledge base models and encodes knowledge about public-transport platforms and the actions and activities of passengers. Trajectory data from passengers is modelled as a time-series of human activities. Common-sense knowledge and rules are then applied to detect inconsistencies or errors in the data interpretation. Lastly, the rationality that characterises human behaviour is also captured here through a bottom-up Hierarchical Task Network planner that, along with common-sense, corrects misinterpretations to explain passenger behaviour. The system is validated using a simulated bus saloon scenario as a case-study. Eighteen video sequences were recorded with up to six passengers. Four metrics were used to evaluate performance. The system, with an accuracy greater than 90% for each of the four metrics, was found to outperform a rule-base system and a system containing planning alone.