1 resultado para Adaptive Expandable Data-Pump
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (28)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (126)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (31)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (32)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (12)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (3)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (4)
- DigitalCommons@The Texas Medical Center (7)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (11)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- Greenwich Academic Literature Archive - UK (4)
- Hospitais da Universidade de Coimbra (1)
- Instituto Politécnico do Porto, Portugal (63)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (4)
- Publishing Network for Geoscientific & Environmental Data (255)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (43)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (15)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional dos Hospitais da Universidade Coimbra (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (6)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- Scielo Saúde Pública - SP (6)
- Scielo Uruguai (1)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (11)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (2)
- Universidade dos Açores - Portugal (12)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (35)
- Université de Montréal, Canada (1)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (169)
- University of Washington (4)
Resumo:
This letter presents novel behaviour-based tracking of people in low-resolution using instantaneous priors mediated by head-pose. We extend the Kalman Filter to adaptively combine motion information with an instantaneous prior belief about where the person will go based on where they are currently looking. We apply this new method to pedestrian surveillance, using automatically-derived head pose estimates, although the theory is not limited to head-pose priors. We perform a statistical analysis of pedestrian gazing behaviour and demonstrate tracking performance on a set of simulated and real pedestrian observations. We show that by using instantaneous `intentional' priors our algorithm significantly outperforms a standard Kalman Filter on comprehensive test data.