17 resultados para Adam, Juliette, 1836-1936.
Resumo:
The International Brigades are typically viewed as a fighting force whose impetus came from the Comintern, and thus from within the walls of the Kremlin. If the assumption is essentially correct, the broader relation between Stalin’s USSR and the IB has received little attention. This chapter constitutes an empirically-based study of the Soviet role not only in the formation of the IB, but of the Red Army’s collaboration with IB units, and Moscow’s role in the climax and denouement of the brigadistas’ Spanish experience. This study’s principal conclusion is twofold: First, that the creation and sustenance of the IB was part of Stalin’s goal of linking the Loyalist cause with that of the Soviet Union and international communism, a component of a larger geo-strategic gamble which sought to create united opposition to the fascist menace, one which might eventually bring Moscow and the West into a closer alliance. The second conclusion is that the IB, like the broader projection of Soviet power and influence into the Spanish theater, was an overly ambitious operational failure whose abortive retreat is indicative of the basic weakness of the Stalinist regime in the years prior to the Second World War.
Resumo:
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L) has emerged as a promising anticancer agent. However, resistance to TRAIL is likely to be a major problem, and sensitization of cancer cells to TRAIL may therefore be an important anticancer strategy. In this study, we examined the effect of the epidermal growth factor receptor (EGFR)tyrosine kinase inhibitor (TKI) gefitinib and a human epidermal receptor 2 (HER2)-TKI (M578440) on the sensitivity of human colorectal cancer (CRC) cell lines to recombinant human TRAIL (rhTRAIL). A synergistic interaction between rhTRAIL and gefitinib and rhTRAIL and M578440 was observed in both rhTRAIL-sensitive and resistant CRC cells. This synergy correlated with an increase in EGFR and HER2 activation after rhTRAIL treatment. Furthermore, treatment of CRC cells with rhTRAIL resulted in activation of the Src family kinases (SFK). Importantly, we found that rhTRAIL treatment induced shedding of transforming growth factor-alpha (TGF-alpha) that was dependent on SFK activity and the protease ADAM-17. Moreover, this shedding of TGF-alpha was critical for rhTRAIL-induced activation of EGFR. In support of this, SFK inhibitors and small interfering RNAs targeting ADAM-17 and TGF-alpha also sensitized CRC cells to rhTRAIL-mediated apoptosis. Taken together, our findings indicate that both rhTRAIL-sensitive and resistant CRC cells respond to rhTRAIL treatment by activating an EGFR/HER2-mediated survival response and that these cells can be sensitized to rhTRAIL using EGFR/HER2-targeted therapies. Furthermore, this acute response to rhTRAIL is regulated by SFK-mediated and ADAM-17-mediated shedding of TGF-alpha, such that targeting SFKs or inhibiting ADAM-17, in combination with rhTRAIL, may enhance the response of CRC tumors to rhTRAIL. [Cancer Res 2008;68(20):8312-21]
Resumo:
Purpose: We have shown previously that exposure to anticancer drugs can trigger the activation of human epidermal receptor survival pathways in colorectal cancer (CRC). In this study, we examined the role of ADAMs (a disintegrin and metalloproteinases) and soluble growth factors in this acute drug resistance mechanism.
Experimental Design: In vitro and in vivo models of CRC were assessed. ADAM-17 activity was measured using a fluorometric assay. Ligand shedding was assessed by ELISA or Western blotting. Apoptosis was assessed by flow cytometry and Western blotting.
Results: Chemotherapy (5-fluorouracil) treatment resulted in acute increases in transforming growth factor-a, amphiregulin, and heregulin ligand shedding in vitro and in vivo that correlated with significantly increased ADAM-17 activity. Small interfering RNA–mediated silencing and pharmacologic inhibition confirmed that ADAM-17 was the principal ADAM involved in this prosurvival response. Furthermore, overexpression of ADAM-17 significantly decreased the effect of chemotherapy on tumor growth and apoptosis. Mechanistically, we found that ADAM-17 not only regulated phosphorylation of human epidermal receptors but also increased the activity of a number of other growth factor receptors, such as insulin-like growth factor-I receptor and vascular endothelial growth factor receptor.
Conclusions: Chemotherapy acutely activates ADAM-17, which results in growth factor shedding, growth factor receptor activation, and drug resistance in CRC tumors. Thus, pharmacologic inhibition of ADAM-17 in conjunction with chemotherapy may have therapeutic potential for the treatment of CRC.