6 resultados para Acid Dye
Resumo:
The acid anthraquinone dye Tectilon Blue (TB4R) is a major coloured component from the aqueous effluent of a carpet printing plant in Northern Ireland. The aerobic biodegradation of TB4R has been investigated experimentally in batch systems, using three strains of bacteria, namely, Bacillus gordonae (NCIMB 12553), Bacillus benzeovorans (NCIMB 12555) and Pseudomonas putida (NCIMB 9776). All three strains successfully decolourised the dye, and results were correlated using Michaelis-Menten kinetic theory. A recalculation of the reaction rate constants, to account for biosorption, gave an accurate simulation of the colour removal over a 24-h period. Up to 19% of the decolorisation was found to be caused by biosorption of the dye onto the biomass, with the majority of the decolorisation caused by utilisation of the dye by the bacteria. The reaction rate was found to be intermediate between zero and first order at dye concentrations of 200-1000 mg/l. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper reports an experimental investigation of converting waste medium density fibreboard (MDF) sawdust into chars and activated carbon using chemical activation and thermal carbonisation processes. The MDF sawdust generated during the production of architectural mouldings was characterised and found to have unique properties in terms of fine particle size and high particle density. It also has a high content of urea formaldehyde resin used as a binder in the manufacturing of MDF board. Direct thermal carbonisation and chemical activation of the sawdust by metal impregnation and acid (phosphoric acid) treatment prior to pyrolysis treatment were carried out. The surface morphology of the raw dust, its chars and activated carbon were examined using scanning electron microscopy (SEM). Adsorptive properties and total pore volume of the materials were also analysed using the BET nitrogen adsorption method. Liquid adsorption of a reactive dye (Levafix Brilliant red E-4BA) by the derived sawdust carbon was investigated in batch isothermal adsorption process and the results compared to adsorption on to a commercial activated carbon (Filtrasorb F400). The MDF sawdust carbon exhibited in general a very low adsorption capacity towards the reactive dye, and physical characterisation of the carbon revealed that the conventional chemical activation and thermal carbonisation process were ineffective in developing a microporous structure in the dust particles. The small size of the powdery dust, the high particle density, and the presence of the urea formaldehyde resin all contributed to the difficulty of developing a proper porous structure during the thermal and chemical activation process. Finally, activation of the dust material in a consolidated form (cylindrical pellet) only achieved very limited improvement in the dye adsorption capacity. This original study, reporting some unexpected outcomes, may serve as a stepping-stone for future investigations of recycle and reuse of the waste MDF sawdust which is becoming an increasing environmental and cost liability. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The removal of acid dyes, Tectilon Blue 4R, Tectilon Red 2B and Tectilon Orange 3G, from single solute, bisolute and trisolute solutions by adsorption on activated carbon (GAC F400) has been investigated in isotherm experiments. Results from these experiments were modelled using the Langmuir and Freundlich adsorption isotherm theories with the Langmuir model proving to be the more suitable. The Ideal Adsorbed Solution (IAS) model was coupled with the Langmuir isotherm to predict binary adsorption on the dyes. The application of the IAS theory accurately simulated the experimental data with an average deviation of approximately 3% between modelled and experimental data.
Resumo:
In the present study, the activated carbon is produced using phosphoric acid treatment of the waste bamboo scaffolding and activated at either 400 or 600 °C. The effect of acid to bamboo ratio (Xp) up to 2.4 has been studied. The BET surface area increased with increasing Xp and activating temperature. BET surface area up to 2500 m2/g carbon has been produced. In order to simulate effluent treatment from textile industry, the produced carbon was tested for its dye adsorption capacities. Two acid dyes with different molecular sizes were used, namely Acid Yellow 117 (AY117) and Acid Blue 25 (AB25). In a single component system, it was found that dye with smaller molecular size, AB25, was readily adsorbed onto the carbon while the larger size dye, AY117, showed little adsorption. As a result, it is possible to tailor-make the carbon for the adsorption of dye mixtures in industrial applications, especially textile dyeing, i.e. molecular sieve effect. A binary AY117–AB25 mixture was used to test the possibility of the molecular sieve effect. Furthermore, experimental results were fitted to equilibrium isotherm models, Langmuir, Freundlich and Sips for the single component system. For the binary component system, extended single-component equilibrium isotherm models were used to predict the experimental data.
Resumo:
The observed adsorption of acid orange 7, AO7(-), on P25 titania over a range of pH values (pH 2-8) gives a good fit to data generated using a charge distribution, multisite complexation, i.e. CD-MUSIC, model, modified for aggregated dye adsorption. For this system the model predicts that both the apparent dark Langmuir adsorption constant. K-L, and the number of adsorption sites, n(o), increase with decreasing pH, and are negligible above pH 6. At pH 2 the CD-MUSIC model predicts the fraction of singly co-ordinated sites occupied by the dye,f(AO7), is ca. 32% under the in situ monitoring experimental conditions used in this work to study the photocatalytic bleaching of AO7(-) under UV light illumination ([TiO2] = 20 mgdm(-3); [AO7(-)](total) = 4.86 x 10(-5) M). Although AO7(-) adsorption on P25 titania is insignificant above pH 6 and increases almost linearly and markedly below this pH, the measured initial rate of bleaching of AO7(-), photocatalysed by titania using UV appears to only increase modestly (
Resumo:
This work comprises the photoactivity assessment of transparent sol–gel TiO2 coatings of various thickness using two test systems. The initial rates of both photocatalytic reactions, namely the oxidative bleaching of Acid Orange 7 (AO7) and the reductive bleaching of 2,6-dichlorindophenol (DCIP) increase linearly with increasing titania film thickness as well as with increasing absorbed light flux. The latter work revealed quantum yields (QY) of 0.19% and 92% for the AO7 and DCIP test system, respectively. The low QY for the AO7 oxidation is due to the combination of a slow irreversible reduction of oxygen and also for the oxidation of AO7, thus favouring the high efficiency for electron–hole recombination that is typical for aqueous organic pollutants. In contrast, the very high QY for the photocatalysed reduction of DCIP is due to the presence of a vast excess of glycerol which traps the photogenerated holes efficiently and so allow time for the slower reduction of dye to take place. Furthermore, the oxidation of glycerol results in the generation of highly reducing R-hydroxyalkyl radicals that are able to also reduce DCIP. As a consequence of this ‘current doubling’ effect, the observed QY (92%) is much higher than the apparent theoretical value of 50%.