109 resultados para Acceleration (Mechanics).


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years there have been a growing number of publications on procedures for damage detection in beams from analysing their dynamic response to the passage of a moving force. Most of this research demonstrates their effectiveness by showing that a singularity that did not appear in the healthy structure is present in the response of the damaged structure. This paper elucidates from first principles how the acceleration response can be assumed to consist of ‘static’ and ‘dynamic’ components, and where the beam has experienced a localised loss in stiffness, an additional ‘damage’ component. The combination of these components establishes how the damage singularity will appear in the total response. For a given damage severity, the amplitude of the ‘damage’ component will depend on how close the damage location is to the sensor, and its frequency content will increase with higher velocities of the moving force. The latter has implications for damage detection because if the frequency content of the ‘damage’ component includes bridge and/or vehicle frequencies, it becomes more difficult to identify damage. The paper illustrates how a thorough understanding of the relationship between the ‘static‘ and ‘damage’ components contributes to establish if damage has occurred and to provide an estimation of its location and severity. The findings are corroborated using accelerations from a planar finite element simulation model where the effects of force velocity and bridge span are examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this study were to determine the fracture toughness of adhesive interfaces between dentine and clinically relevant, thin layers of dental luting cements. Cements tested included a conventional glass-ionomer, F (Fuji I), a resin-modified glass-ionomer, FP (Fuji Plus) and a compomer cement, D (DyractCem). Ten miniature short-bar chevron notch specimens were manufactured for each cement, each comprising a 40 µm thick chevron of lute, between two 1.5 mm thick blocks of bovine dentine, encased in resin composite. The interfacial KIC results (MN/m3/2) were median (range): F; 0.152 (0.14-0.16), FP; 0.306 (0.27-0.37), D; 0.351 (0.31-0.37). Non-parametric statistical analysis showed that the fracture toughness of F was significantly lower (p

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of energetic proton production resulting from the interaction of high-intensity laser pulses with foil targets are described. Through the use of layered foil targets and heating of the target material we are able to distinguish three distinct populations of protons. One high energy population is associated with a proton source near the front surface of the target and is observed to be emitted with a characteristic ring structure. A source of typically lower energy, lower divergence protons originates from the rear surface of the target. Finally, a qualitatively separate source of even lower energy protons and ions is observed with a large divergence. Acceleration mechanisms for these separate sources are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acceleration of multi-MeV protons from the rear surface of thin solid foils irradiated by an intense (similar to 10(18) W/cm(2)) and short (similar to 1.5 ps) laser pulse has been investigated using transverse proton probing. The structure of the electric field driving the expansion of the proton beam has been resolved with high spatial and temporal resolution. The main features of the experimental observations, namely, an initial intense sheath field and a late time field peaking at the beam front, are consistent with the results from particle-in-cell and fluid simulations of thin plasma expansion into a vacuum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews recent experimental activity in the area of optimization, control, and application of laser accelerated proton beams, carried out at the Rutherford Appleton Laboratory and the Laboratoire pour l’Utilisation des Lasers Intenses 100 TW facility in France. In particular, experiments have investigated the role of the scale length at the rear of the plasma in reducing target-normal-sheath-acceleration acceleration efficiency. Results match with recent theoretical predictions and provide information in view of the feasibility of proton fast-ignition applications. Experiments aiming to control the divergence of the proton beams have investigated the use of a laser-triggered microlens, which employs laser-driven transient electric fields in cylindrical geometry, enabling to focus the emitted
protons and select monochromatic beam lets out of the broad spectrum beam. This approach could be advantageous in view
of a variety of applications. The use of laser-driven protons as a particle probe for transient field detection has been developed and
applied to a number of experimental conditions. Recent work in this area has focused on the detection of large-scale self-generated magnetic fields in laser-produced plasmas and the investigation of fields associated to the propagation of relativistic electron both on the surface and in the bulk of targets irradiated by high-power laser pulses.