55 resultados para Absorbing-state phase transition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic liquids are organic salts with low melting points. Many of these compounds are liquid at room temperature in their pure state. Since they have negligible vapor pressure and would not contribute to air pollution, they are being intensively investigated for a variety of applications, including as solvents for reactions and separations, as non-volatile electrolytes, and as heat transfer fluids. We present melting temperatures, glass transition temperatures, decomposition temperatures, heat capacities, and viscosities for a large series of pyridinium-based ionic liquids. For comparison, we include data for several imidazolium and quaternary ammonium salts. Many of the compounds do not crystallize, but form glasses at temperatures between 188 K and 223 K. The thermal stability is largely determined by the coordinating ability of the anion, with ionic liquids made with the least coordinating anions, like bis(trifluoromethylsulfonyl)imide, having the best thermal stability. In particular, dimethylaminopyridinium bis(trifluoromethylsulfonyl)imide salts have some of the best thermal stabilities of any ionic liquid compounds investigated to date. Heat capacities increase approximately linearly with increasing molar mass, which corresponds with increasing numbers of translational, vibrational, and rotational modes. Viscosities generally increase with increasing number and length of alkyl substituents on the cation, with the pyridinium salts typically being slightly more viscous than the equivalent imidazolium compounds. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide insight into the quantum correlations structure present in strongly correlated systems beyond the standard framework of bipartite entanglement. To this aim we first exploit rotationally invariant states as a test bed to detect genuine tripartite entanglement beyond the nearest neighbor in spin-1/2 models. Then we construct in a closed analytical form a family of entanglement witnesses which provides a sufficient condition to determine if a state of a many-body system formed by an arbitrary number of spin-1/2 particles possesses genuine tripartite entanglement, independently of the details of the model. We illustrate our method by analyzing in detail the anisotropic XXZ spin chain close to its phase transitions, where we demonstrate the presence of long-range multipartite entanglement near the critical point and the breaking of the symmetries associated with the quantum phase transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have resolved the solid-liquid phase transition of carbon at pressures around 150GPa. High-pressure samples of different temperatures were created by laser-driven shock compression of graphite and varying the initial density from 1.30g/cm3 to 2.25g/cm3. In this way, temperatures from 5700K to 14,500K could be achieved for relatively constant pressure according to hydrodynamic simulations. From measuring the elastic X-ray scattering intensity of vanadium K-alpha radiation at 4.95keVat a scattering angle of 126°, which is very sensitive to the solid-liquid transition, we can determine whether the sample had transitioned to the fluid phase. We find that samples of initial density 1.3g/cm3 and 1.85g/cm3 are liquid in the compressed states, whereas samples close to the ideal graphite crystal density of 2.25g/cm3 remain solid, probably in a diamond-like state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high-temperature cubic-tetragonal phase transition of pure stoichiometric zirconia is studied by molecular dynamics (MD) simulations and within the framework of the Landau theory of phase transformations. The interatomic forces are calculated using an empirical, self-consistent, orthogonal tight-binding model, which includes atomic polarizabilities up to the quadrupolar level. A first set of standard MD calculations shows that, on increasing temperature, one particular vibrational frequency softens. The temperature evolution of the free-energy surfaces around the phase transition is then studied with a second set of calculations. These combine the thermodynamic integration technique with constrained MD simulations. The results seem to support the thesis of a second-order phase transition but with unusual, very anharmonic behavior above the transition temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The functional properties of two types of barium strontium titanate (BST) thin film capacitor structures were studied: one set of structures was made using pulsed-laser deposition (PLD) and the other using chemical solution deposition. While initial observations on PLD films looking at the behavior of T-m (the temperature at which the maximum dielectric constant was observed) and T-c(*) (from Curie-Weiss analysis) suggested that the paraelectric-ferroelectric phase transition was progressively depressed in temperature as BST film thickness was reduced, further work suggested that this was not the case. Rather, it appears that the temperatures at which phase transitions occur in the thin films are independent of film thickness. Further, the fact that in many cases three transitions are observable, suggests that the sequence of symmetry transitions that occur in the thin films are the same as in bulk single crystals. This new observation could have implications for the validity of the theoretically produced thin film phase diagrams derived by Pertsev [Phys. Rev. Lett. 80, 1988 (1998)] and extended by Ban and Alpay [J. Appl. Phys. 91, 9288 (2002)]. In addition, the fact that T-m measured for virgin films does not correlate well with the inherent phase transition behavior, suggests that the use of T-m alone to infer information about the thermodynamics of thin film capacitor behavior, may not be sufficient. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[Ag(NH3)(2)](ClO4) is obtained from a solution of AgClO4 in cone. ammonia as colourless single crystals (orthorhombic, Pnmn, Z = 4, a = 795.2(1) pm, b 617.7(1) pm, c = 1298.2(2) pm, R-all = 0.0494). The structure consists of linearly coordinated cations, [Ag(NH3)(2)](+), stacked in a staggered conformation and of tetrahedral (ClO4)(-) anions. A first order phase transition was observed between 210 and 200 K and the crystal structure of the low-temperature modification (monoclinic. P2/m, Z = 4, a = 789.9(5) pm, b = 604.1(5) pm, c = 1290.4(5) pm, beta = 97.436(5)degrees, at 170 K, R-all = 0.0636) has also been solved. Spectroscopic investigations (IR/Raman) have been carried out and the assignment of the spectra is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a combination of experimental and computational techniques, changes in the domain structures seen infreestanding single-crystal platelets of BaTiO3 have been described in terms of a second-order phase transition.The transition is driven by the change in the length-to-width ratio of the platelet sidewalls and results in a symmetrybreaking of a complex, quadrant domain pattern. The phenomenon can be described by a Landau formalism inwhich (1) the order parameter is not the polarization but rather is the degree to which the domain pattern becomesoff-centered, and (2) the shape anisotropy of the platelet substitutes for temperature in the conventional Landauexpansion as the controlling thermodynamic variable. Bistability, in terms of the direction in which the domainpattern moves off center, coupled with the spontaneous macroscopic polarization and toroidal moment that resultfrom this off-centering, prompt the possibility of a new form of memory storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a one-dimensional rice-pile model which connects the 1D BTW sandpile model (Phys. Rev. A 38 (1988) 364) and the Oslo rice-pile model (Phys. Rev. Lett. 77 (1997) 107) in a continuous manner. We found that for a sufficiently large system, there is a sharp transition between the trivial critical behaviour of the 1D BTW model and the self-organized critical (SOC) behaviour. When there is SOC, the model belongs to a known universality class with the avalanche exponent tau = 1.53. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work demonstrates that instead of paraelectric PbTiO(3), completely c-oriented ferroelectric PbTiO(3) thin films were directly grown on (001)-SrTiO(3) substrates by pulsed-laser deposition with thickness up to 340 nm at a temperature well above the Curie temperature of bulk PbTiO(3). The influence of laser-pulse frequency, substrate-surface termination on growth, and functional properties were studied using x-ray diffraction, transmission electron microscopy, and piezoresponse force microscopy. At low growth rates (frequency 8 Hz) a domains were formed for film thickness above 20-100 nm. Due to coherency strains the Curie temperature (T(c)) of the monodomain films was increased approximately by 350 degrees C with respect to the T(c) of bulk PbTiO(3) even for 280-nm-thick films. Nonetheless, up to now this type of growth mode has been considered unlikely to occur since the Matthews-Blakeslee (MB) model already predicts strain relaxation for films having a thickness of only similar to 10 nm. However, the present work disputes the applicability of the MB model. It clarifies the physical reasons for the large increase in T(c) for thick films, and it is shown that the experimental results are in good agreement with the predictions based on the monodomain model of Pertsev et al. [Phys. Rev. Lett. 80, 1988 (1998)].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone void fillers that can enhance biological function to augment skeletal repair have significant therapeutic potential in bone replacement surgery. This work focuses on the development of a unique microporous (0.5-10 mu m) marine-derived calcium phosphate bioceramic granule. It was prepared fro Corallina officinalis, a mineralized red alga, using a novel manufacturing process. This involved thermal processing, followed by a low pressure-temperature chemical synthesis reaction. The study found that the ability to maintain the unique algal morphology was dependent on the thermal processing conditions. This study investigates the effect of thermal heat treatment on the physiochemical properties of the alga. Thermogravimetric analysis was used to monitor its thermal decomposition. The resultant thermograms indicated the presence of a residual organic phase at temperatures below 500 degrees C and an irreversible solid-state phase transition from mg-rich-calcite to calcium oxide at temperatures over 850 degrees C. Algae and synthetic calcite were evaluated following heat treatment in an air-circulating furance at temperatures ranging from 400 to 800 degrees C. The highest levels of mass loss occurred between 400-500 degrees C and 700-800 degrees C, which were attributed to the organic and carbonate decomposition respectively. The changes in mechanical strength were quantified using a simple mechanical test, which measured the bulk compressive strength of the algae. The mechanical test used may provide a useful evaluation of the compressive properties of similar bone void fillers that are in granular form. The study concluded that soak temperatures in the range of 600 to 700 degrees C provided the optimum physiochemical properties as a precursor to conversion to hydroxyapatite (HA). At these temperatures, a partial phase transition to calcium oxide occurred and the original skeletal morphology of the alga remained intact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the ground-state phase diagram of ultracold dipolar gases in highly anisotropic traps. Starting from a one-dimensional geometry, by ramping down the transverse confinement along one direction, the gas reaches various planar distributions of dipoles. At large linear densities, when the dipolar gas exhibits a crystal-like phase, critical values of the transverse frequency exist below which the configuration exhibits transverse patterns. These critical values are found by means of a classical theory, and are in full agreement with classical Monte Carlo simulations. The study of the quantum system is performed numerically with Monte Carlo techniques and shows that the quantum fluctuations smoothen the transition and make it completely disappear in a gas phase. These predictions could be experimentally tested and would allow one to reveal the effect of zero-point motion on self-organized mesoscopic structures of matter waves, such as the transverse pattern of the zigzag chain.