71 resultados para ARBITRARY MAGNETIC-FIELD
Resumo:
Equilibrium distances, binding energies and dissociation energies for the ground and low-lying states of the hydrogen molecular ion in a strong magnetic field parallel to the internuclear axis are calculated and refined, by using the two- dimensional pseudospectral method. High-precision results are presented for the binding energies over a wider field regime than already given in the literature (Kravchenko and Liberman 1997 Phys. Rev. A 55 2701). The present work removes a long- standing discrepancy for the R-eq value in the 1sigma(u) state at a field strength of 1.0 x 10(6) T. The dissociation energies of the antibonding 1pi(g) state induced by magnetic fields are determined accurately. We have also observed that the antibonding 1pi(g) potential energy curve develops a minimum if the field is sufficiently strong. Some unreliable results in the literature are pointed out and discussed. A way to efficiently treat vibrational processes and coupling between the nuclear and the electronic motions in magnetic fields is also suggested within a three-dimensional pseudospectral scheme.
Resumo:
An analytical nonlinear description of field-line wandering in partially statistically magnetic systems was proposed recently. In this article the influence of the wave spectrum in the energy range onto field-line random walk is investigated by applying this formulation. It is demonstrated that in all considered cases we clearly obtain a superdiffusive behavior of the field-lines. If the energy range spectral index exceeds unity a free-streaming behavior of the field-lines can be found for all relevant length-scales of turbulence. Since the superdiffusive results obtained for the slab model are exact, it seems that superdiffusion is the normal behavior of field-line wandering.
Resumo:
Two sequences of solar images obtained by the Transition Region and Coronal Explorer in three UV passbands are studied using wavelet and Fourier analysis and compared to the photospheric magnetic flux measured by the Michelson Doppler Interferometer on the Solar Heliospheric Observatory to study wave behavior in differing magnetic environments. Wavelet periods show deviations from the theoretical cutoff value and are interpreted in terms of inclined fields. The variation of wave speeds indicates that a transition from dominant fast-magnetoacoustic waves to slow modes is observed when moving from network into plages and umbrae. This implies preferential transmission of slow modes into the upper atmosphere, where they may lead to heating or be detected in coronal loops and plumes.
Resumo:
Large magnetic fields generated during laser-matter interaction at irradiances of ~ 5×1014 W?cm-2 have been measured using a deflectometry technique employing MeV laser-accelerated protons. Azimuthal magnetic fields were identified unambiguously via a characteristic proton deflection pattern and found to have an amplitude of ~ 45 T in the outer coronal region. Comparison with magnetohydrodynamic simulations confirms that in this regime the mathTe×mathne source is the main field generation mechanism, while additional terms are negligible.
Resumo:
We present a detailed analysis of the characteristics of electroconvection patterns in a homeotropic nematic liquid crystal under the influence of a variable magnetic field. An unambiguous observation of low frequency
Resumo:
The weakly nonlinear regime of transverse paramagnetic dust grain oscillations in dusty (complex) plasma crystals is discussed. The nonlinearity, which is related to the sheath electric/magnetic field(s) and to the intergrain (electrostatic/magnetic dipole) interactions, is shown to lead to the generation of phase harmonics and, in the case of propagating transverse dust-lattice modes, to the modulational instability of the carrier wave due to self-interaction. The stability profile depends explicitly on the form of the electric and magnetic fields in the plasma sheath. The long term evolution of the modulated wave packet, which is described by a nonlinear Schrodinger-type equation, may lead to propagating localized envelope structures whose exact forms are presented and discussed. Explicit suggestions for experimental investigations are put forward. (C) 2004 American Institute of Physics.
Resumo:
The nonlinear coupling between two magnetic-field-aligned electromagnetic electron-cyclotron (EMEC) waves in plasmas is considered. Evaluating the ponderomotive coupling between the EMEC waves and quasistationary plasma density perturbations, a pair of coupled nonlinear Schrodinger equations (CNLSEs) is obtained. The CNLSEs are then used to investigate the occurrence of modulational instability in magnetized plasmas. Waves in the vicinity of the zero-group-dispersion point are considered, so that the group dispersion terms may either bear the same or different signs. It is found that a stable EMEC wave can be destabilized due to its nonlinear interactions with an unstable one, while a pair of unstable EMEC waves yields an increased instability growth rate. Individually stable waves remain stable while interacting with one another. Stationary nonlinear solutions of the coupled equations are presented. The relevance of our investigation to nonlinear phenomena in space plasmas is discussed. (c) 2005 American Institute of Physics.
Resumo:
The random displacement of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. A two-component (slab/two-dimensional composite) model for the turbulence spectrum is employes. An analytical investigation of the asymptotic behavior of the field-line mean square displacement (FL-MSD) is carried out. It is shown that the magnetic field lines behave superdifusively for every large values of the position variable z, since the FL-MSD sigma varies as sigma similar to z(4/3). An intermediate diffusive regime may also possible exist for finite values of z under conditions which are explicitly determined in terms of the intrinsic turbulent plasma parameters. The superdiffusie asymptotic result is confirmed numerically via an iterative algorithm. The relevance to previous resuslts is discussed.
Resumo:
The random walk of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. An isotropic model is employed for the magnetic turbulence spectrum. An analytical investigation of the asymptotic behavior of the field-line mean-square displacement is carried out. in terms of the position variable z. It is shown that varies as similar to z ln z for large distance z. This result corresponds to a superdiffusive behavior of field line wandering. This investigation complements previous work, which relied on a two-component model for the turbulence spectrum. Contrary to that model, quasilinear theory appears to provide an adequate description of the field line random walk for isotropic turbulence.
Resumo:
While the role of magnetic cues for compass orientation has been confirmed in numerous animals, the mechanism of detection is still debated. Two hypotheses have been proposed, one based on a light dependent mechanism, apparently used by birds and another based on a "compass organelle" containing the iron oxide particles magnetite (Fe3O4). Bats have recently been shown to use magnetic cues for compass orientation but the method by which they detect the Earth's magnetic field remains unknown. Here we use the classic "Kalmijn-Blakemore" pulse re-magnetization experiment, whereby the polarity of cellular magnetite is reversed. The results demonstrate that the big brown bat Epteskus fuscus uses single domain magnetite to detect the Earths magnetic field and the response indicates a polarity based receptor. Polarity detection is a prerequisite for the use of magnetite as a compass and suggests that big brown bats use magnetite to detect the magnetic field as a compass. Our results indicate the possibility that sensory cells in bats contain freely rotating magnetite particles, which appears not to be the case in birds. It is crucial that the ultrastructure of the magnetite containing magnetoreceptors is described for our understanding of magnetoreception in animals.
Resumo:
A scheme employing an external axial magnetic field is proposed to diagnose the intrinsic divergence of laser-generated fast electron beams, and this is studied numerically with hybrid simulations. The maximum beam radius of fast electrons increases with the initial divergence and decreases with the amplitude of the axial magnetic field. It is indicated that the intrinsic divergence of fast electrons can be inferred from measurements of the beam radius at different depth under the axial field. The proposed scheme here may be useful for future fast ignition experiments and in other applications of laser-generated fast electron beams. (C) 2011 American Institute of Physics. [doi:10.1063/1.3630925]
Resumo:
The spatial and temporal evolution of spontaneous megagauss magnetic fields, generated during the interaction of a picosecond pulse with solid targets at irradiances above 5 x 10(18) W/cm(2) have been measured using Faraday rotation with picosecond resolution. A high density plasma jet has been observed simultaneously with the magnetic fields by interferometry and optical emission. Two-dimensional magnetohydrodynamic simulations reproduced the main features of the experiment and showed that the jet formation is due to pinching by the magnetic fields.