26 resultados para AQUATIC MACROPHYTES
Resumo:
We review the uses of fossil insects, particularly Coleoptera (beetles) and Chironomidae (non-biting midges) from ancient deposits to inform the study of wetland ecosystems and their ecological and restoration processes. In particular, we focus on two contrasting ecosystems, drawing upon research undertaken by us on British raised mire peats and shallow lake systems, one an essentially terrestrial ecosystem, the other aquatic, but in which wetland insects play an important and integral part. The study of raised mire peats suggests that faunal stability is a characteristic of these wetland systems, over what appear to be extensive periods of time (up to several millennia), whilst studies of shallow lake ecosystems over recent timescales indicates that faunal instability appears to be more common, usually driven by increasing eutrophication. Drawing upon a series of fossil Coleoptera records spanning several thousand years from Hatfield Moors, south Yorkshire, we reconstruct in some detail the mire’s ontogeny and fluctuations in site hydrology and vegetation cover, illustrating the intimate association between substrate, topography and peat development. A comparison between fossil and modern beetle populations indicates that the faunal characteristics of this mire and its adjacent neighbour, Thorne Moors, become established during the early phases of peat development, including its rare endemics, and that the faunal biodiversity on the sites today is dictated by complex site histories. The over-riding characteristic of these faunas is of stability over several thousand years, which has important implications for the restoration of degraded sites, especially those where refugial areas are limited. In contrast, analyses of fossil Chironomidae from shallow lakes allow researchers to track changes in limnological status and while attempts have been made to reconstruct changes in nutrient levels quantitatively, the chironomids respond indirectly to such changes, typically mediated through complex ecosystem dynamics such as changes in fish and/or macrophyte communities. These changes are illustrated via historic chironomid stratigraphies and diversity indices from a range of shallow lakes located across Britain: Slapton Ley, Frensham Great Pond, Fleet Pond, Kyre Pool and Barnes Loch. These sites have shown varying degrees of eutrophication over recent timescales which tends to be associated with a decline in chironomid diversity. While complex functional processes exist within these ecosystems, our evidence suggests that one of the key drivers in the loss of shallow lake chironomid diversity appears to be the loss of aquatic macrophytes. Overall, while chironomids do show a clear response to altered nutrient regimes, multi-proxy reconstructions are recommended for a clear interpretation of past change. We conclude that if we are to have a better understanding of biota at the ecosystem level we need to know more of the complex interactions between different insect groups as well as with other animal and plant communities. A palaeoecological approach is thus crucial in order to assess the role of insect groups in ecosystem processes, both in the recent past and over long time scales, and is essential for wetland managers and conservation organisations involved in long term management and restoration of wetland systems.
Resumo:
Little is known about long-term ecological responses in lakes following red mud pollution. Among red mud contaminants, arsenic (As) is of considerable concern. Determination of the species of As accumulated in aquatic organisms provides important information about the biogeochemical cycling of the element and transfer through the aquatic food-web to higher organisms. We used coupled ion chromatography and inductively coupled plasma mass spectrometry (ICP-MS) to assess As speciation in tissues of five macrophyte taxa in Kinghorn Loch, UK, 30 years following the diversion of red mud pollution from the lake. Toxic inorganic As was the dominant species in the studied macrophytes, with As species concentrations varying with macrophyte taxon and tissue type. The highest As content measured in roots of Persicaria amphibia (L.) Gray (87.2 mg kg-1) greatly exceeded the 3 - 10 mg kg-1 range suggested as a potential phytotoxic level. Accumulation of toxic As species by plants suggested toxicological risk to higher organisms known to utilise macrophytes as a food source.
Resumo:
Proper application of stable isotopes (e. g., delta N-15 and delta C-13) to food web analysis requires an understanding of all nondietary factors that contribute to isotopic variability. Lipid extraction is often used during stable isotope analysis (SIA), because synthesized lipids have a low delta C-13 and can mask the delta C-13 of a consumer's diet. Recent studies indicate that lipid extraction intended to adjust delta C-13 may also cause shifts in delta N-15, but the magnitude of and reasons for the shift are highly uncertain. We examined a large data set (n = 854) for effects of lipid extraction (using Bligh and dyer's [ 1959] chloroform-methanol solvent mixtures) on the delta N-15 of aquatic consumers. We found no effect of chemically extracting lipids on the delta N-15 of whole zooplankton, unionid mussels, and fish liver samples, and found a small increase in fish muscle delta N-15 of similar to 0.4%. We also detected a negative relationship between the shift in delta N-15 following extraction and the C:N ratio in muscle tissue, suggesting that effects of extraction were greater for tissue with lower lipid content. As long as appropriate techniques such as those from Bligh and dyer (1959) are used, effects of lipid extraction on delta N-15 of aquatic consumers need not be a major consideration in the SIA of food webs.
Resumo:
The antimicrobial peptides of amphibian skin secretions are proposed to aid survival in microbe-rich environments. While many amphibians inhabit such environments, other such as the Wuyi Mountain torrent frog, Amolops wuyiensis, live in pristine waters flowing from underground mountain springs. This species thus represents an interesting model in which to study antimicrobial peptides. “Shotgun” cloning of a skin-derived cDNA library from this species identified transcripts encoding a brevinin-1 and a ranatuerin-2. Peptides with coincident molecular masses to both predicted mature peptides were identified in HPLC fractions of skin secretion. Synthetic replicates of both peptides were generated by solid-phase peptide synthesis and tested for activity using Staphylococcus aureus, Escherichia coli and Candida albicans. The brevinin was found to be broad-spectrum and potent with minimum inhibitory concentrations (MICs) of 24 µM (Sa), 5 µM (Ec) and 20 µM (Ca). In contrast, the ranatuerin was less effective and of narrower spectrum with an MIC > 200 µM for Sa, 40 µM (Ec) and 120 µM (Ca). Thus this species of amphibian that lives in a pristine environment does indeed possess at least one potent and broad-spectrum antimicrobial peptide in its skin secretion arsenal. This phenomenon could be explained in several ways. Firstly, it may represent an ancestral peptide required when the stem species inhabited microbe-rich environments. However, there is mounting evidence for the second reason, that suggests the function of such peptides is not primarily in antimicrobial defence.
Resumo:
Introduction of the invasive Asian cyprinid fish Pseudorasbora parva into a 0.3 ha pond in England with a fish assemblage that included Cyprinus carpio, Rutilus rutilus and Scardinius erythrophthalmus resulted in their establishment of a numerically dominant population in only 2 years; density estimates exceeded 60 ind. m(-2) and they comprised > 99% of fish present. Stable isotope analysis (SIA) revealed significant trophic overlap between P. parva, R. rutilus and C. carpio, a shift associated with significantly depressed somatic growth in R. rutilus. Despite these changes, fish community composition remained similar between the ponds. Comparison with SIA values collected from an adjacent pond free of P. parva revealed a simplified food web in P. parva presence, but with an apparent trophic position shift for several fishes, including S. erythrophthalmus which appeared to assimilate energy at a higher trophic level, probably through P. parva consumption. The marked isotopic shifts shown in all taxa in the P. parva invaded pond (C-13-enriched, N-15 depleted) were indicative of a shift to a cyanobacteria-dominated phytoplankton community. These findings provide an increased understanding of the ecological consequences of the ongoing P. parva invasion of European freshwater ecosystems.
Resumo:
A sediment succession from Hojby So, a lake in eastern Denmark, covering the time period 9400-7400 cal yr BP was studied using high-resolution geochemistry, magnetic susceptibility, pollen, macrofossil, diatom, and algal pigment analysis to investigate responses of the terrestrial and aquatic ecosystems to the 8.2 ka cold event. A reduced pollen production by thermophilous deciduous tree taxa in the period c. 8250-8000 cal yr BP reveal that the forest ecosystem was affected by low temperatures during the summer and winter/early-spring seasons. This finding is consistent with the timing of the 8.2 ka cold event as registered in the Greenland ice cores. At Hojby So, the climate anomaly appears to have started 200-250 yr earlier than the 8.2 ka cold event as the lake proxy data provide strong evidence for a precipitation-induced distinct increase in catchment soil erosion beginning around 8500 cal yr BP. Alteration of the terrestrial environment then resulted in a major aquatic ecosystem change with nutrient enrichment of the lake and enhanced productivity, which lasted until c. 7900 cal yr BP. (C) 2009 University of Washington. Published by Elsevier Inc. All rights reserved.
Resumo:
1. Lough Neagh and Lough Beg Special Protection Area (SPA, hereafter Lough Neagh) is an important non-estuarine site in Britain and Ireland for overwintering wildfowl. Multivariate analysis of the winter counts showed a state-shift in the waterbird community following winter 2000/2001, mostly due to rapid declines in abundance (46–57% declines in the mean mid-winter January counts between 1993–2000 and 2002–2009) of members of the diving duck guild (pochard Aythya ferina, tufted duck Aythya fuligula and goldeneye Bucephala clangula) and coot (Fulica atra), a submerged macrophyte feeder.
2. Only pochard showed correlations between declines at Lough Neagh and those of overall species flyway population indices to suggest that global changes could contribute to declines at the site. However, indices from the Republic of Ireland showed no overall decline in the rest of Ireland. Tufted duck indices at the site were inversely related to indices in Great Britain. Lough Neagh goldeneye indices were positively correlated with indices in the Republic of Ireland and Great Britain, suggesting that short-stopping could contribute to declines at the site. Coot declines at Lough Neagh did not correlate with trends elsewhere, suggesting local factors involved in the decline.
3. These analyses indicate that although there are potentially different explanations for the dramatic declines in these four waterbird species at this site, the simultaneous nature of the declines across two feeding guilds strongly
suggest that local factors (such as loss of submerged macrophytes and benthic invertebrates) were involved. An assessment of the food supply, local disturbance and other factors at Lough Neagh is required to find an explanation for the observed adverse trends in wintering numbers of the affected species.
4. This study highlights the potential of waterbird community structure to reflect the status of aquatic systems, but confirms the need to establish site-specific factors responsible for the observed changes in abundance of key waterbird species at a site.