26 resultados para ANTIMICROBIAL PROPERTIES
Resumo:
We describe, for the first time, the microbial characterisation of hydrogel-forming polymeric microneedle arrays and the potential for passage of microorganisms into skin following microneedle penetration. Uniquely, we also present insights into the storage stability of these hydroscopic formulations, from physical and microbiological viewpoints, and examine clinical performance and safety in human volunteers. Experiments employing excised porcine skin and radiolabelled microorganisms showed that microorganisms can penetrate skin beyond the stratum corneum following microneedle puncture. Indeed, the numbers of microorganisms crossing the stratum corneum following microneedle puncture were greater than 105 cfu in each case. However, no microorganisms crossed the epidermal skin. When using a 21G hypodermic needle, more than 104 microorganisms penetrated into the viable tissue and 106 cfu of Candida albicans and Staphylococcus epidermidis completely crossed the epidermal skin in 24 h. The hydrogel-forming materials contained no microorganisms following de-moulding and exhibited no microbial growth during storage, while also maintaining their mechanical strength, apart from when stored at relative humidities of 86%. No microbial penetration through the swelling microneedles was detectable, while human volunteer studies confirmed that skin or systemic infection is highly unlikely when polymeric microneedles are used for transdermal drug delivery. Since no pharmacopoeial standards currently exist for microneedle-based products, the exact requirements for a proprietary product based on hydrogel-forming microneedles are at present unclear. However, we are currently working towards a comprehensive specification set for this microneedle system that may inform future developments in this regard.
Resumo:
Background: Epididymal protease inhibitor (eppin) is a dual motif protein belonging to the whey acidic protein (WAP) family. Although expressed in numerous different tissues, to date, its functional characterisation is limited. It has been shown to exhibit antibacterial activity against Gram-negative bacteria (Escherichia coli) and antiprotease activity against some proteases of the serine protease family. We are interested in determining the role of eppin in innate immune defence. Objectives: This study aims to determine eppin's potential function in the innate immune response in the oral cavity by investigating the antimicrobial activity of eppin against relevant oral pathogens. Methods: Eppin was recombinantly expressed in E. coli cells and purified by immobilised metal affinity chromatography (IMAC). The antimicrobial effects of the protein were then assessed against two oral pathogens, Fusobacterium nucleatum and Candida albicans, using a double layer radial diffusion assay. Results: Eppin displayed antimicrobial activities against both oral pathogens tested and these activities were shown to be comparable to the well characterised antimicrobial peptide, LL-37. The antifungal effects of eppin were shown to be more potent than those of the human cathelicidin, LL-37. Conclusions: Eppin has been shown to possess both antibacterial and antifungal properties against oral pathogens, suggesting an important role for this protein in the innate immune response in the oral cavity. This study furthers our knowledge of the physiological role exerted by eppin and its possible role in the modulation of chronic diseases such as periodontitis and oral candidiasis.
Resumo:
Recent in vivo studies indicate that mesenchymal stem cells (MSCs) may have beneficial effects in the treatment of sepsis induced by bacterial infection. Administration of MSCs in these studies improved survival and enhanced bacterial clearance. The primary objective of this study was to test the hypothesis that human MSCs possessed intrinsic antimicrobial properties. We studied the effect of human MSCs derived from bone marrow on the bacterial growth of Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria. MSCs as well as their conditioned medium (CM) demonstrated marked inhibition of bacterial growth in comparison with control medium or normal human lung fibroblasts (NHLF). Analysis of expression of major antimicrobial peptides indicated that one of the factors responsible for the antimicrobial activity of MSC CM against Gram-negative bacteria was the human cathelicidin antimicrobial peptide, hCAP-18/LL-37. Both m-RNA and protein expression data showed that the expression of LL-37 in MSCs increased after bacterial challenge. Using an in vivo mouse model of E. coli pneumonia, intratracheal administration of MSCs reduced bacterial growth (in colony-forming unit) in the lung homogenates and in the bronchoalveolar lavage (BAL) fluid, and administration of MSCs simultaneously with a neutralizing antibody to LL-37 resulted in a decrease in bacterial clearance. In addition, the BAL itself from MSC-treated mice had a greater antimicrobial activity in comparison with the BAL of phosphate buffered saline (PBS)-treated mice. Human bone marrow-derived MSCs possess direct antimicrobial activity, which is mediated in part by the secretion of human cathelicidin hCAP-18/ LL-37.
Resumo:
Antimicrobial peptides (AMPs) are effectors of cutaneous innate immunity and protect primarily against microbial infections. An array of AMPs can be found in and on the skin. Those include peptides that were first discovered for their antimicrobial properties but also proteins with antimicrobial activity first characterized for their activity as chemokines, enzymes, enzyme inhibitors and neuropeptides. Cathelicidins were among the first families of AMPs discovered in skin. They are now known to exert a dual role in innate immune defense: they have direct antimicrobial activity and will also initiate a host cellular response resulting in cytokine release, inflammation and angiogenesis. Altered cathelicidin expression and function was observed in several common inflammatory skin diseases such as atopic dermatitis, rosacea and psoriasis. Until recently the molecular mechanisms underlying cathelicidin regulation were not known. Lately, vitamin D3 was identified as the major regulator of cathelicidin expression and entered the spotlight as an immune modulator with impact on both, innate and adaptive immunity. Therapies targeting vitamin D3 signalling may provide novel approaches for the treatment of infectious and inflammatory skin diseases by affecting both innate and adaptive immune functions through AMP regulation.
Resumo:
Hospital-acquired infections pose both a major risk to patient wellbeing and an economic burden on global healthcare systems, with the problem compounded by the emergence of multidrug resistant and biocide tolerant bacterial pathogens. Many inanimate surfaces can act as a reservoir for infection, and adequate disinfection is difficult to achieve and requires direct intervention. In this study we demonstrate the preparation and performance of materials with inherent photodynamic, surface-active, persistent antimicrobial properties through the incorporation of photosensitizers into high density poly(ethylene) (HDPE) using hot-melt extrusion, which require no external intervention except a source of visible light. Our aim is to prevent bacterial adherence to these surfaces and eliminate them as reservoirs of nosocomial pathogens, thus presenting a valuable advance in infection control. A two-layer system with one layer comprising photosensitizer-incorporated HDPE, and one layer comprising HDPE alone is also described to demonstrate the versatility of our approach. The photosensitizer-incorporated materials are capable of reducing the adherence of viable bacteria by up to 3.62 Log colony forming units (CFU) per square centimeter of material surface for methicillin resistant Staphylococcus aureus (MRSA), and by up to 1.51 Log CFU/cm2 for Escherichia coli. Potential applications for the technology are in antimicrobial coatings for, or materials comprising objects, such as tubing, collection bags, handrails, finger-plates on hospital doors, or medical equipment found in the healthcare setting.
Resumo:
Methods: In this study we determined, for the first time, the ability of microorganisms to traverse microneedle-induced holes using two different in vitro models.
Results: When employing Silescol® membranes, the numbers of Candida albicans, Pseudomonas aeruginosa and Staphylococcus epidermidis crossing the membranes were an order of magnitude lower when the membranes were punctured by microneedles rather than a 21G hypodermic needle. Apart from the movement of C. albicans across hypodermic needle-punctured membranes, where 40.2% of the microbial load on control membranes permeated the barrier over 24 h, the numbers of permeating microorganisms was less than 5% of the original microbial load on control membranes. Experiments employing excised porcine skin and radiolabelled microorganisms showed that the numbers of microorganisms penetrating skin beyond the stratum corneum were approximately an order of magnitude greater than the numbers crossing Silescol® membranes in the corresponding experiments. Approximately 103?cfu of each microorganism adhered to hypodermic needles during insertion. The numbers of microorganisms adhering to MN arrays were an order of magnitude higher in each case.
Conclusion: We have shown here that microneedle puncture resulted in significantly less microbial penetration than did hypodermic needle puncture and that no microorganisms crossed the viable epidermis in microneedle—punctured skin, in contrast to needle-punctured skin. Given the antimicrobial properties of skin, it is, therefore, likely that application of microneedle arrays to skin in an appropriate manner would not cause either local or systemic infection in normal circumstances in immune-competent patients. In supporting widespread clinical use of microneedle-based delivery systems, appropriate animal studies are now needed to conclusively demonstrate this in vivo. Safety in patients will be enhanced by aseptic or sterile manufacture and by fabricating microneedles from self-disabling materials (e.g. dissolving or biodegradable polymers) to prevent inappropriate or accidental reuse.
Resumo:
Lysozyme is a naturally occurring enzyme in egg white and has high commercial importance due to its antimicrobial properties. The main objective of this work was to study the growth rate of lysozyme crystals isolated from egg for the first 72 hours and verify the results with McCabe’s constant crystal growth theory. Hanging drop crystallization method was used to form high purity lysozyme crystals from the embryonic stage. To this end, this work differs from an earlier work of Forsythe et al., who used seed crystals in the size range of 10 µm - 40 µm for face growth measurements at different pH values. The maximum crystal size recorded in the present work was 392.86 µm, which is within the typical size range of 50 µm - 500 µm for which constant crystal growth is expected to hold according to McCabe’s ?L law. Electron micrographs (SEM) revealed the structure and dimensions of the crystals while SDS-Page was used to measure the purity of the crystals. The SEM results showed that that lysozyme growth rate was linear and agreed with McCabe’s constant growth theory, producing a growth rate of 1.77 x 10-3 µm .s-1
Resumo:
Cataract surgery is one of the most commonly-practiced surgical procedures in Western medicine, and, while complications are rare, the most serious is infectious postoperative endophthalmitis. Bacteria may adhere to the implanted intraocular lens (IOL) and subsequent biofilm formation can lead to a chronic, difficult to treat infection. To date, no method to reduce the incidence of infectious endophthalmitis through bacterial elimination, while retaining optical transparency, has been reported. In this study we report a method to optimise the localisation of a cationic porphyrin at the surface of suitable acrylate copolymers, which is the first point of contact with potential pathogens. The porphyrin catalytically generates short-lived singlet oxygen, in the presence of visible light, which kills adherent bacteria indiscriminately. By restricting the photosensitiser to the surface of the biomaterial, reduction in optical transparency is minimised without affecting efficacy of singlet oxygen production. Hydrogel IOL biomaterials incorporating either methacrylic acid (MAA) or methyl methacrylate (MMA) co-monomers allow tuning of the hydrophobic and anionic properties to optimise the localisation of porphyrin. Physiochemical and antimicrobial properties of the materials have been characterised, giving candidate materials with self-generating, persistent anti-infective character against Gram-positive and Gram-negative organisms. Importantly, incorporation of porphyrin can also serve to protect the retina by filtering damaging shortwave visible light, due to the Soret absorption (?max) 430 nm). © 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this study, a series of hydrogels was synthesized by free radical polymerization, namely poly(2-(hydroxyethyl) methacrylate) (pHEMA), poly(4-(hydroxybutyl)methacrylate) (pHBMA), poly(6-(hydroxyhexyl)methacrylate) (pHHMA), and copolymers composed of N-isopropylacrylamide (NIPAA), methacrylic acid (MA), NIPAA, and the above monomers. The surface, mechanical, and swelling properties (at 20 and 37 degrees C, pH 6) of the polymers were determined using dynamic contact angle analysis, tensile analysis, and thermogravimetry, respectively. The T-g and lower critical solution temperatures (LCST) were determined using modulated DSC and oscillatory rheometry, respectively. Drug loading of the hydrogels with chlorhexidine diacetate was performed by immersion in a drug solution at 20 degrees C (
Resumo:
This study describes the thermorheological, mechanical and drug release properties of novel, light-activated antimicrobial implants. Hydrogels, based on N-isopropylacrylamide (NIPAA) and hydroxyethyl methacryl ate (HEMA) and either devoid of or containing zinc tetraphenylporphyrin, were prepared by free radical polymerisation and characterised using oscillatory rheometry and texture profile analysis. Drug release was studied at both 20 and 37 degrees C. Hydrogels containing NIPAA exhibited a sol-gel temperature (Tin), which increased as the proportion of HEMA increased and was
Resumo:
Cationic amphipathic α-helical peptides are intensively studied classes of host defence peptides (HDPs). Three peptides, peptide glycine-leucine-amide (PGLa-AM1), caerulein-precursor fragment (CPF-AM1) and magainin-AM1, originally isolated from norepinephrine-stimulated skin secretions of the African volcano frog Xenopus amieti (Pipidae), were studied for their antimicrobial and immunomodulatory activities against oral and respiratory pathogens. Minimal effective concentrations (MECs), determined by radial diffusion assay, were generally lower than minimal inhibitory concentrations (MICs) determined by microbroth dilution. PGLa-AM1 and CPF-AM1 were particularly active against Streptococcus mutans and all three peptides were effective against Fusobacterium nucleatum, whereas Enterococcus faecalis and Candida albicans proved to be relatively resistant micro-organisms. A type strain of Pseudomonas aeruginosa was shown to be more susceptible than the clinical isolate studied. PGLa-AM1 displayed the greatest propensity to bind lipopolysaccharide (LPS) from Escherichia coli, P. aeruginosa and Porphyromonas gingivalis. All three peptides showed less binding to P. gingivalis LPS than to LPS from the other species studied. Oral fibroblast viability was unaffected by 50. μM peptide treatments. Production of the pro-inflammatory cytokine IL-8 by oral fibroblasts was significantly increased following treatment with 1 or 10. μM magainin-AM1 but not following treatment with PGLa-AM1 or CPF-AM1. In conclusion, as well as possessing potent antimicrobial actions, the X. amieti peptides bound to LPS from three human pathogens and had no effect on oral fibroblast viability. CPF-AM1 and PGLa-AM1 show promise as templates for the design of novel analogues for the treatment of oral and dental diseases associated with bacteria or fungi.
Resumo:
This study describes the physicochemical properties and in vitro resistance to encrustation of solvent cast films composed of either poly(epsilon-caprolactone) (PCL), prepared using different ratios of high (50,000) to low (4000) (molecular weight) m.wt., or blends of PCL and the polymeric antimicrobial complex, poly(vinylpyrrolidone)-iodine (PVP-I). The incorporation of PVP-I offered antimicrobial activity to the biomaterials. Films were characterised in terms of mechanical (tensile analysis, dynamic mechanical thermal analysis) and surface properties (dynamic contact angle analysis, scanning electron microscopy), whereas degradation (at 37degreesC in PBS at pH 7.4) was determined gravimetrically. The resistance of the films to encrustation was evaluated using an in vitro encrustation model. Reductions in the ratio of high:low-m.wt. PCL significantly reduced the ultimate tensile strength, % elongation at break and the advancing contact angle of the films. These effects were attributed to alterations in the amorphous content and the more hydrophilic nature of the films. Conversely, there were no alterations in Young's modulus, the viscoelastic properties and glass-transition temperature. Incorporation of PVP-I did not affect the mechanical or rheological properties of the films, indicative of a limited interaction between the two polymers in the solid state. Manipulation of the high:low m.wt. ratio of PCL significantly altered the degradation of the films, most notably following longer immersion periods, and resistance to encrustation. Accordingly, maximum degradation and resistance to encrustation was observed with the biomaterial composed of 40:60 high:low m.wt. ratios of PCL; however, the mechanical properties of this system were considered inappropriate for clinical application. Films composed of either 50:50 or 60:40 ratio of high:low m.wt. PCL offered an appropriate compromise between physicochemical properties and resistance to encrustation. This study has highlighted the important usefulness of degradable polymer systems as ureteral biomaterials
Resumo:
Bacterial infection remains a significant problem following total joint replacement. Efforts to prevent recurrent implant infection, including the use of antibiotic-loaded bone cement for implant fixation at the time of revision surgery, are not always successful. In this in vitro study, we investigated whether the addition of chitosan to gentamicin-loaded Palacos® R bone cement increased antibiotic release and prevented bacterial adherence and biofilm formation by Staphylococcus spp. clinical isolates. Furthermore, mechanical tests were performed as a function of time post-polymerisation in pseudo-physiological conditions. The addition of chitosan to gentamicin-loaded Palacos® R bone cement significantly decreased gentamicin release and did not increase the efficacy of the bone cement at preventing bacterial colonisation and biofilm formation. Moreover, the mechanical performance of cement containing chitosan was significantly reduced after 28 days of saline degradation with the compressive and bending strengths not in compliance with the minimum requirements as stipulated by the ISO standard for PMMA bone cement. Therefore, incorporating chitosan into gentamicin-loaded Palacos® R bone cement for use in revision surgery has no clinical antimicrobial benefit and the detrimental effect on mechanical properties could adversely affect the longevity of the prosthetic joint.
Resumo:
The skin secretion of the North American pickerel frog (Rana palustris) has long been known to have pronounced noxious/toxic properties and to be highly effective in defence against predators and against other sympatric amphibians. As it consists largely of a complex mixture of peptides, it has been subjected to systematic peptidomic study but there has been little focus on molecular cloning of peptide-encoding cDNAs and by deduction, the biosynthetic precursors that they encode. Here, we demonstrate that the cDNAs encoding the five major structural families of antimicrobial peptides can be elucidated by a single step “shotgun” cloning approach using a cDNA library constructed from the source material of the peptidomic studies—the defensive skin secretion itself. Using a degenerate primer pool designed to a highly conserved nucleic acid sequence 5' to the initiation codon of known antimicrobial peptide precursor transcripts, we amplified cDNA sequences representing five major classes of antimicrobial peptides, such as esculentins, brevinins, ranatuerins, palustrins and temporins. Bioinformatic comparisons of precursor open-reading frames and nucleic acid sequences revealed high degrees of structural similarities between analogous peptides of R. palustris and the Chinese bamboo odorous frog, Rana versabilis. This approach thus constitutes a robust technique that can be used either alone or ideally, in parallel with peptidomic analysis of skin secretion, to rapidly extract primary structural information on amphibian skin secretion peptides and their biosynthetic precursors.