91 resultados para AMPEROMETRIC BIOSENSOR
Resumo:
A rapid and sensitive screening qualitative method using a surface plasmon resonance (SPR) biosensor was developed which can detect of all fenicol antibiotic residues in shrimps from a single sample extract. This method requires ethyl acetate extraction followed by a single wash with isooctane/chlorofonrm. Each sample extract is injected over the surfaces of two biosensor chip flow cells, one surface having the capability to detect florefenicol amine (FF amine), florefenicol (FF), and thiamphenicol (TAP) and the second surface for chloramphenicol (CAP) detection. The estimated detection capabilities (CC beta) were 0. 1, 0.2, 250, and 0.5 ppb for CAP, FF, FF amine, and TAP, respectively. This quick, simple test allowed the detection of CAP residues in shrimps at the minimum required performance limit (MRPL) of 0.1 mu g kg(-1) for this compound and of FF, FF amine, and TAP below their maximum residue limits (MRLs). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Six polyclonal antisera to chloramphenicol (CAP) were successfully raised in camels, donkeys and goats. As a comparison of sensitivity, IC50 values ranged from 0.3 ng mL(-1) to 5.5 ng mL(-1) by enzyme-linked immunosorbent assay (ELISA) and from 0.7 ng mL(-1) to 1.7 ng mL(-1) by biosensor assay. The introduction of bovine milk extract improved the sensitivity of four of the antisera by ELISA and two by biosensor assay; a reduction in sensitivity of the remaining antisera ranged by a factor of 1.1-2.6. Porcine kidney extract reduced the sensitivity of all the antisera by a factor ranging from 1.1 to 7 by ELISA and a factor of 1.5 to 4 by biosensor. A low cross-reactivity with thiamphenicol (TAP) and florfenicol (FF) was displayed by antiserurn G2 (1.2% and 18%, respectively) when a homologous ELISA assay format was employed. No cross-reactivity was displayed by any of the antisera when a homologous biosensor assay format was employed. Switching to a heterologous ELISA format prompted three of the antisera to display more significant cross-reactivity with TAP and FF (53% and 82%, respectively, using Dl). The heterologous biosensor assay also increased the cross-reactivity of D1 for TAP and FF (56% and 129%, respectively) and of one other antiserum (Gl) to a lesser degree. However, unlike the ELISA, the heterologous biosensor assay produced a substantial reduction in sensitivity (by a factor of 6 for D1). (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The phnA gene that encodes the carbon-phosphorus bond cleavage enzyme phosphonoacetate hydrolase is widely distributed in the environment, suggesting that its phosphonate substrate may play a significant role in biogeochemical phosphorus cycling. Surprisingly, however, no biogenic origin for phosphonoacetate has yet been established. To facilitate the search for its natural source we have constructed a whole-cell phosphonoacetate biosensor. The gene encoding the LysR-type transcriptional activator PhnR, which controls expression of the phosphonoacetate degradative operon in Pseudomonas fluorescens 23F, was inserted in the broad-host-range promoter probe vector pPROBE-NT, together with the promoter region of the structural genes. Cells of Escherichia coli DH5a that contained the resultant construct, pPANT3, exhibited phosphonoacetate-dependent green fluorescent protein fluorescence in response to threshold concentrations of as little as 0.5 µM phosphonoacetate, some 100 times lower than the detection limit of currently available non-biological analytical methods; the pPANT3 biosensor construct in Pseudomonas putida KT2440 was less sensitive, although with shorter response times. From a range of other phosphonates and phosphonoacetate analogues tested, only phosphonoacetaldehyde and arsonoacetate induced green fluorescent protein fluorescence in the E. coli DH5a (pPANT3) biosensor, although at much-reduced sensitivities (50 µM phosphonoacetaldehyde and 500 µM arsonoacetate).
Resumo:
Surface plasmon resonance (SPR) based biosensor technology has been widely used in life science research for many applications. While the advantages of speed, ruggedness, versatility, sensitivity and reproducibility are often quoted, many researchers have experienced severe problem of non-specific binding (NSB) to chip surfaces when performing analysis of biological samples Such as bovine serum. Using the direct measurement of the bovine protein leptin, present in bovine serum samples as a model, a unique buffering system has been developed and optimised which was able to significantly reduce the non-specific interactions of bovine serum components with the carboxymethyl dextran chip (CM5) surface on a Biacore SPR The developed NSB buffering system comprised of HBS-EP buffer, containing 0.5 M NaCl, 0.005% CM-dextran pH 9.0. An average NSB reduction (n = 20) of 85.9% and 87.3% was found on an unmodified CM5 surface and a CM5 with bovine leptin immobilised on the chip surface, respectively. A reduction in NSB of up to 94% was observed on both surfaces. The concentration of the constitutive components and pH of the buffer were crucial in achieving this outcome. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A rapid analytical optical biosensor-based immunoassay was developed and validated for the detection of okadaic acid (OA) and its structurally related toxins from shellfish matrix. The assay utilizes a monoclonal antibody which binds to the OA group of toxins in order of their toxicities, resulting in a pseudofunctional assay. Single-laboratory validation of the assay for quantitative detection of OA determined that it has an action limit of 120 mu g/kg, a limit of detection of 31 mu g/kg, and a working range of 31-174 mu g/kg. The midpoint on the standard matrix calibration curve is 80 mu g/kg, half the current regulatory limit. Inter- and intra-assay studies of negative mussel samples spiked with various OA concentrations produced average coefficient of variation (CV) and standard deviation (SD) values of 7.9 and 10.1, respectively. The assay was also validated to confirm the ability to accurately codetect and quantify dinophysistoxin-1 (DTX-1), DTX-2, and DTX-3 from shellfish matrix. Alkaline hydrolysis was not required for the detection of DTX-3 from matrix. Excellent correlations with the data generated by the biosensor method and liquid chromatography/tandem mass spectrometry (LC/MS/MS) were obtained using a certified reference material (R-2 = 0.99), laboratory reference material, and naturally contaminated mussel samples (R-2 = 0.97). This new procedure could be used as a rapid screening procedure replacing animal-based tests for DSP toxins.
Resumo:
A research element of the European Union (EU) sixth Framework project BioCop focused on the development of a surface plasmon resonance (SPR) biosensor assay for the detection of paralytic shellfish poisoning (PSP) toxins in shellfish as an alternative to the increasingly ethically unacceptable mouse bioassay. A biosensor assay was developed using both a saxitoxin binding protein and chip surface in tandem with a highly efficient simple extraction procedure. The present report describes the single laboratory validation of this immunological screening method, for this complex group of toxins with differing toxicities, according to the European Decision 2002/657/EC in conjunction with IUPAC and AOAC single laboratory validation guidelines. The different performance characteristics (detection capability CC beta, specificity/selectivity, repeatability, reproducibility, stability, and applicability) were determined in relation to the EU regulatory limit of 800 mu g of saxitoxin equivalents (STX eq) per kg of shellfish meat. The detection capability CC beta was calculated to be 120 mu g/kg. Intra-assay repeatability was found to be between 2.5 and 12.3% and interassay reproducibility was between 6.1 and 15.2% for different shellfish matrices. Natural samples were also evaluated and the resultant data displayed overall agreements of 96 and 92% with that of the existing AOAC approved methods of mouse bioassay (MBA) and high performance liquid chromatography (HPLC), respectively.
Resumo:
Tiamulin (TIA) is an antimicrobial veterinary drug administered subtherapeutically to prevent swine dysentery and pneumonia. Due to its stability, crystalline structure, and water-soluble properties, TIA is a prime candidate for environmental monitoring. However, there are currently no screening methods available for TIA in environmental matrices, such as grass or ground water. In this paper, the development and validation of a screening method using optical SPR biosensor technology is presented. A solvent extraction was carried out on samples prior to analysis using the Biacore Q instrument. The limit of detection for the assay in grass and ground water was 10.8 ng/g and 2.4 ng/ml, respectively. In addition, the assay was shown to be of an acceptable standard with regard to both accuracy and reproducibility.