9 resultados para AMK20-2129
Resumo:
The defensive strategy of amphibians against predator attack relies heavily on the secretion of noxious/toxic chemical cocktails from specialized skin granular glands. Bioactive peptides constitute a major component of secretions in many species and the most complex are produced by neotropical leaf frogs of the sub-family Phyllomedusinae. We recently reported that these skin secretions contain elements of both the granular gland peptidome and transcriptome and that polyadenylated mRNAs constituting the latter are protected from degradation by interactions with endogenous amphipathic peptides. This thus permits parallel amino acid sequencing of peptides and nucleic acid sequencing of cloned precursor transcripts from single lyophilized samples of secretion. Here we report that the protection afforded is sufficiently robust to permit transcriptome studies by cloning of full-length polyadenylated peptide precursor encoding mRNAs from libraries constructed using ambient temperature air-dried skin from recently deceased specimens as source material. The technique was sufficiently sensitive to permit the identification of cDNAs encoding antimicrobial peptides constituted by six different isoforms of phylloseptin and two dermaseptins. Also, for the first time, establishment of the nucleic acid and amino acid sequence of the precursor encoding the phyllomedusine frog skin bradykinin-related peptide, phyllokinin, from cloned cDNA, was achieved. These data unequivocally demonstrate that the granular gland transcriptome persists in air-dried amphibian skin—a finding that may have fundamental implications in the study of archived materials but also in the wider field of molecular biology.
Resumo:
Biochemical studies reveal that a conserved arginine residue (R37) at the centre of the 14 angstrom internal cavity of histone deacetylase (HDAC) 8 is important for catalysis and acetate affinity. Computational studies indicate that R37 forms multiple hydrogen bonding interactions with the backbone carbonyl oxygen atoms of two conserved glycine residues, G303 and G305, resulting in a 'closed' form of the channel. One possible rationale for these data is that water or product (acetate) transit through the catalytically crucial internal channel of HDAC8 is regulated by a gating interaction between G139 and G303 tethered in position by the conserved R37. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The 5'-O-monomethoxytrityl-3'-S-(aryldisulfanyl)-3'-deoxythymidines 7 and 8 have been prepared by the reaction of 5'-O-monomethoxytrityl-3'-thiothymidine with the appropriate arenesulfenyl chloride. These disulfides undergo a Michaelis–Arbusov reaction with simple trialkyl phosphites to yield 5'-O-monomethoxytrityl-3'-thiothymidin-3'-yl O,O-dialkyl phosphorothiolates. More interestingly, 3'-deoxy-3'-S-(2, 4-dinitrophenylsulfanyl)-5'-O-monomethoxytritylthymidine 8 reacts with a variety of thymidin-5'-yl dialkyl phosphites to give dithymidine phosphorothiolate triesters with the phosphorothiolate group protected with either a methyl or a 2-cyanoethyl group. 3'-O-(tert-Butyldimethylsilyl)thymidin-5'-yl triethylammoniumphosphonate 17 is converted into the corresponding bis-(O-trimethylsilyl) phosphite by treatment with bis(trimethylsilyl)trifluoroacetamide. in situ Reaction of this phosphate with disulfide 8 gives, after work-up, the dithymidine phosphorothiolate diester directly. Methylation of compound 17 with methyl chloromethanoate, followed by silylation and subsequent reaction with disulfide 8, gives the methyl-protected dithymidine phosphorothiolate triester.
Resumo:
The application of high intensity laser-produced gamma rays is discussed with regard to picosecond resolution deep-penetration radiography. The spectrum and angular distribution of these gamma rays is measured using an array of thermoluminescent detectors for both an underdense (gas) target and an overdense (solid) target. It is found that the use of an underdense target in a laser plasma accelerator configuration produces a much more intense and directional source. The peak dose is also increased significantly. Radiography is demonstrated in these experiments and the source size is also estimated. (C) 2002 American Institute of Physics.
Resumo:
Abstract
AIMS/HYPOTHESIS:
Retinal vascular calibre changes may reflect early subclinical microvascular disease in diabetes. Because of the considerable homology between retinal and cerebral microcirculation, we examined whether retinal vascular calibre, as a proxy of cerebral microvascular disease, was associated with cognitive function in older people with type 2 diabetes.
METHODS:
A cross-sectional analysis of 954 people aged 60-75 years with type 2 diabetes from the population-based Edinburgh Type 2 Diabetes Study was performed. Participants underwent standard seven-field binocular digital retinal photography and a battery of seven cognitive function tests. The Mill Hill Vocabulary Scale was used to estimate pre-morbid cognitive ability. Retinal vascular calibre was measured from an image field with the optic disc in the centre using a validated computer-based program.
RESULTS:
After age and sex adjustment, larger retinal arteriolar and venular calibres were significantly associated with lower scores for the Wechsler Logical Memory test, with standardised regression coefficients -0.119 and -0.084, respectively (p?<?0.01), but not with other cognitive tests. There was a significant interaction between sex and retinal vascular calibre for logical memory. In male participants, the association of increased retinal arteriolar calibre with logical memory persisted (p?<?0.05) when further adjusted for vocabulary, venular calibre, depression, cardiovascular risk factors and macrovascular disease. In female participants, this association was weaker and not significant.
CONCLUSIONS/INTERPRETATION:
Retinal arteriolar dilatation was associated with poorer memory, independent of estimated prior cognitive ability in older men with type 2 diabetes. The sex interaction with stronger findings in men requires confirmation. Nevertheless, these data suggest that impaired cerebral arteriolar autoregulation in smooth muscle cells, leading to arteriolar dilatation, may be a possible pathogenic mechanism in verbal declarative memory decrements in people with diabetes.