7 resultados para ALUMINUM-OXIDE
Resumo:
Low-energy electron diffraction, X-ray photoelectron spectroscopy, high-resolution electron energy-loss spectroscopy, scanning tunneling microscopy, and temperature-programmed reaction spectrometry results are reported for the structural and reactive behavior of alumina films grown on Pt(111) as a function of thickness and oxidation temperature. Submonolayer Al films undergo compete oxidation at 300 K, annealing at 1100 K resulting in formation of somewhat distorted crystalline gamma-alumina, Thicker deposits require 800 K oxidation to produce Al2O3, and these too undergo crystallization at 800 K, yielding islands of apparently undistorted gamma-alumina on the Pt(111) surface. Oxidation of a p(2 x 2) Pt3Al surface alloy occurs only at>800 K, resulting in Al extraction, These alumina films on Pt(lll) markedly increase the coverage of adsorbed SO4 resulting from SO2 chemisorption onto oxygen-precovered surfaces. This results in enhanced propane uptake and subsequent reactivity relative to SO4/Pt(111). A bifunctional mechanism is proposed to account for our observations, and the relevance of these to an understanding of the corresponding dispersed systems is discussed.
Resumo:
Rings of perovskite lead zirconium titanate (PZT) with internal diameters down to similar to 5 nm and ring thicknesses of similar to 5-10 nm have been fabricated and structurally, crystallographically, and chemically characterized using an analytical transmission electron microscope. Ring fabrication involved conformal solution deposition of a thin layer of PZT on the inside of a thin film of anodized aluminum oxide nanopores, and subsequent sectioning of the coated pores perpendicular to their cylinder axes. Although the starting solution used for the solution deposition was made from morphotropic phase boundary PZT, the nanorings were found to be on the zirconium-rich side of the PZT phase diagram. Nevertheless, coatings were found to be of perovskite crystallography. The dimensions of these nanorings are such that they have the potential to demonstrate polarization vortices, as modeled by Naumov [Nature (London) 432, 737 (2004)], and moreover represent the perfect morphology to allow vortex alignment and the creation of the ferroelectric "solenoid" as modeled by Gorbatsevich and Kopaev [Ferroelectrics 161, 321 (1994)].
Resumo:
Protonated betaine bis(trifluoromethylsulfonyl) imide is an ionic liquid with the ability to dissolve large quantities of metal oxides. This metal-solubilizing power is selective. Soluble are oxides of the trivalent rare earths, uranium(VI) oxide, zinc(II) oxide, cadmium( II) oxide, mercury( II) oxide, nickel( II) oxide, copper(II) oxide, palladium(II) oxide, lead(II) oxide, manganese( II) oxide, and silver( I) oxide. Insoluble or very poorly soluble are iron(III), manganese(IV), and cobalt oxides, as well as aluminum oxide and silicon dioxide. The metals can be stripped from the ionic liquid by treatment of the ionic liquid with an acidic aqueous solution. After transfer of the metal ions to the aqueous phase, the ionic liquid can be recycled for reuse. Betainium bis( trifluoromethylsulfonyl) imide forms one phase with water at high temperatures, whereas phase separation occurs below 55.5 degrees C ( temperature switch behavior). The mixtures of the ionic liquid with water also show a pH-dependent phase behavior: two phases occur at low pH, whereas one phase is present under neutral or alkaline conditions. The structures, the energetics, and the charge distribution of the betaine cation and the bis( trifluoromethylsulfonyl) imide anion, as well as the cation-anion pairs, were studied by density functional theory calculations.
Resumo:
We investigate the magneto-optical properties of a nanostructured metamaterial comprised of arrays of nickel nanorods embedded in an anodized aluminum oxide template. The rods are grown using a self-assembly bottom-up technique that provides a uniform, quasi-hexagonal array over a large area, quickly and at low cost. The tuneability of the magneto-optic response of the material is investigated by varying the nanorod dimensions: diameter, length and inter-rod spacing as well as the overall thickness of the template. It is demonstrated that the system acts as a sub-wavelength light trap with enhanced magneto-optical properties occurring at reflectivity minima corresponding to photonic resonances of the metamaterial. Changes in dimensions of the nickel rods on the order of tens of nanometers cause a spectral blue-shift in the peak magneto-optical response of 270 nm in the visible range. A plasmonic enhancement is also observed at lower wavelengths, which becomes increasingly damped with larger diameters and increased volume fraction of nickel inclusions. This type of structure has potential applications in high density magneto-optical data storage (up to 1011–12 rods per square inch), ultrafast magneto-plasmonic switching and optical components for telecommunications.
Resumo:
Centimeter sized arrays of gold coaxial rod-in-a tube cavities have been fabricated using anodized aluminum oxide as a template. The etching process used to create the cavities enables the production of extremely small gaps between tube and rod, on the order of 5 nm, smaller than those created by standard fabrication techniques. Normal incidence spectroscopy reveals two extinction peaks in the visible and near infrared wavelength range associated with resonant plasmonic modes excited in the structure. Numerical simulations show that the modes are associated with in-phase and out-of-phase hybridization of transverse dipolar excitations in the nanorod and in the tube.
Resumo:
Large areas of perfectly ordered magnetic CoFe2O4 nanopillars embedded in a ferroelectric BiFeO3 matrix were successfully fabricated via a novel nucleation-induced self-assembly process. The nucleation centers of the magnetic pillars are induced before the growth of the composite structure using anodic aluminum oxide (AAO) and lithography-defined gold membranes as hard mask. High structural quality and good functional properties were obtained. Magneto-capacitance data revealed extremely low losses and magneto-electric coupling of about 0.9 mu C/cmOe. The present fabrication process might be relevant for inducing ordering in systems based on phase separation, as the nucleation and growth is a rather general feature of these systems.