8 resultados para ALBENDAZOLE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The binding of drugs to plasma proteins – especially serum albumin – is an important factor in controlling the availability and distribution of these drugs. In this study we have investigated the binding of two drugs commonly used to treat liver fluke infections, albendazole (ABZ) and triclabendazole (TCBZ), and their sulphoxide metabolites to bovine serum albumin (BSA). Both ABZ and TCBZ caused shifts in the mobility of BSA in native gel electrophoresis. No such changes were observed with the sulphoxides under identical conditions. The drugs, and their sulphoxides, caused quenching of the intrinsic tryptophan fluorescence of BSA, indicating association between the drugs and this protein. Quantification of this quenching suggested a 5–10-fold reduction in affinity of the sulphoxides compared to the parent compounds. These results are discussed in respect to previous work on the pharmacodynamics of these fasciolicides and will inform the design of novel anthelmintics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although it is well established that benzimidazole (BZMs) compounds exert their therapeutic effects through binding to helminth beta-tubulin and thus disrupting microtubule-based processes in the parasites, the precise location of the benzimidazole-binding site on the beta-tubulin molecule has yet to be determined. In the present study, we have used previous experimental data as cues to help identify this site. Firstly, benzimidazole resistance has been correlated with a phenylalanine-to-tyrosine substitution at position 200 of Haemonchus contortus beta-tubulin isotype-I. Secondly, site-directed mutagenesis studies, using fungi, have shown that other residues in this region of the protein can influence the interaction of benzimidazoles with beta-tubulin. However, the atomic structure of the alphabeta-tubulin dimer shows that residue 200 and the other implicated residues are buried within the protein. This poses the question: how might benzimidazoles interact with these apparently inaccessible residues? In the present study, we present a mechanism by which those residues generally believed to interact with benzimidazoles may become accessible to the drugs. Furthermore, by docking albendazole-sulphoxide into a modelled H. contortus beta-tubulin molecule we offer a structural explanation for how the mutation conferring benzimidazole resistance in nematodes may act, as well as a possible explanation for the species-specificity of benzimidazole anthelmintics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthelmintic drugs are widely used to control parasitic infections in cattle. The ProSafeBeef project addressed the need for data on the exposure of European consumers of beef to potentially harmful drug residues. A novel analytical method based on matrix solid-phase dispersive extraction and ultra-performance liquid chromatography-tandem mass spectrometry was validated for 37 anthelmintic drugs and metabolites in muscle (assay decision limits, CCa, = 0.15-10.2 µg kg -1). Seven European countries (France, Spain, Slovenia, Ireland, Italy, Belgium and Portugal) participated in a survey of retail beef purchased in local shops. Of 1061 beef samples analysed, 26 (2.45%) contained detectable residues of anthelmintic drugs (0.2-171 µg kg -1), none above its European Union maximum residue limit (MRL) or action level. Residues detected included closantel, levamisole, doramectin, eprinomectin, moxidectin, ivermectin, albendazole and rafoxanide. In a risk assessment applied to mean residue concentrations across all samples, observed residues accounted for less than 0.1% of the MRL for each compound. An exposure assessment based on the consumption of meat at the 99th percentile of consumption of adults in 14 European countries demonstrated that beef accounted for less than 0.02% of the acceptable daily intake for each compound in each country. This study is the first of its kind to apply such a risk-based approach to an extensive multi-residue survey of veterinary drug residues in food. It has demonstrated that the risk of exposure of the European consumer to anthelmintic drug residues in beef is negligible, indicating that regulation and monitoring is having the desired effect of limiting residues to non-hazardous concentrations. © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anthelmintic drugs are widely used for treatment of parasitic worms in livestock, but little is known about the stability of their residues in food under conventional cooking conditions. As part of the European Commissionfunded research project ProSafeBeef, cattle were medicated with commercially available anthelmintic preparations, comprising 11 active ingredients (corresponding to 21 marker residues). Incurred meat and liver were cooked by roasting (40 min at 190°C) or shallow frying (muscle 8-12 min, liver 14-19 min) in a domestic kitchen. Raw and cooked tissues and expressed juices were analysed using a novel multi-residue dispersive solid-phase extraction method (QuEChERS) coupled with ultra-performance liquid chromatography-tandem mass spectrometry. After correction for sample weight changes during cooking, no major losses were observed for residues of oxyclozanide, clorsulon, closantel, ivermectin, albendazole, mebendazole or fenbendazole. However, significant losses were observed for nitroxynil (78% in fried muscle, 96% in roast muscle), levamisole (11% in fried muscle, 42% in fried liver), rafoxanide (17% in fried muscle, 18% in roast muscle) and triclabendazole (23% in fried liver, 47% in roast muscle). Migration of residues from muscle into expressed cooking juices varied between drugs, constituting 0% to 17% (levamisole) of total residues remaining after cooking. With the exception of nitroxynil, residues of anthelmintic drugs were generally resistant to degradation during roasting and shallow frying. Conventional cooking cannot, therefore, be considered a safeguard against ingestion of residues of anthelmintic veterinary drugs in beef. © 2011 Taylor & Francis.