4 resultados para AKT PHOSPHORYLATION
Resumo:
Bacterial Lipopolysaccharide (LPS) is a strong inducer of inflammation and does so by inducing polarization of macrophages to the classic inflammatory M1 population. Given the role of Btk as a critical signal transducer downstream of TLR4, we investigated its role in M1/M2 induction. In Btk deficient (Btk (-\-)) mice we observed markedly reduced recruitment of M1 macrophages following intraperitoneal administration of LPS. Ex vivo analysis demonstrated an impaired ability of Btk(-/-) macrophages to polarize into M1 macrophages, instead showing enhanced induction of immunosuppressive M2-associated markers in response to M1 polarizing stimuli, a finding accompanied by reduced phosphorylation of STAT1 and enhanced STAT6 phosphorylation. In addition to STAT activation, M1 and M2 polarizing signals modulate the expression of inflammatory genes via differential activation of transcription factors and regulatory proteins, including NF-κB and SHIP1. In keeping with a critical role for Btk in macrophage polarization, we observed reduced levels of NF-κB p65 and Akt phosphorylation, as well as reduced induction of the M1 associated marker iNOS in Btk(-/-) macrophages in response to M1 polarizing stimuli. Additionally enhanced expression of SHIP1, a key negative regulator of macrophage polarisation, was observed in Btk(-/-) macrophages in response to M2 polarizing stimuli. Employing classic models of allergic M2 inflammation, treatment of Btk (-/-) mice with either Schistosoma mansoni eggs or chitin resulted in increased recruitment of M2 macrophages and induction of M2-associated genes. This demonstrates an enhanced M2 skew in the absence of Btk, thus promoting the development of allergic inflammation.
Resumo:
Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma.
Resumo:
In gastric cancer (GC), the main subtypes (diffuse and intestinal types) differ in pathological characteristics, with diffuse GC exhibiting early disseminative and invasive behaviour. A distinctive feature of diffuse GC is loss of intercellular adhesion. Although widely attributed to mutations in the CDH1 gene encoding E-cadherin, a significant percentage of diffuse GC do not harbor CDH1 mutations. We found that the expression of the actin-modulating cytoskeletal protein, gelsolin, is significantly higher in diffuse-type compared to intestinal-type GCs, using immunohistochemical and microarray analysis. Furthermore, in GCs with wild-type CDH1, gelsolin expression correlated inversely with CDH1 gene expression. Downregulating gelsolin using siRNA in GC cells enhanced intercellular adhesion and E-cadherin expression, and reduced invasive capacity. Interestingly, hepatocyte growth factor (HGF) induced increased gelsolin expression, and gelsolin was essential for HGF-medicated cell scattering and E-cadherin transcriptional repression through Snail, Twist and Zeb2. The HGF-dependent effect on E-cadherin was found to be mediated by interactions between gelsolin and PI3K-Akt signaling. This study reveals for the first time a function of gelsolin in the HGF/cMet oncogenic pathway, which leads to E-cadherin repression and cell scattering in gastric cancer. Our study highlights gelsolin as an important pro-disseminative factor contributing to the aggressive phenotype of diffuse GC.
Resumo:
Mevalonate pathway is of important clinical, pharmaceutical and biotechnological relevance. However, lack of the understanding of the phosphorylation mechanism of the kinases in this pathway has limited rationally engineering the kinases in industry. Here the phosphorylation reaction mechanism of a representative kinase in the mevalonate pathway, phosphomevalonate kinase, was studied by using molecular dynamics and hybrid QM/MM methods. We find that a conserved residue (Ser106) is reorientated to anchor ATP via a stable H-bond interaction. In addition, Ser213 located on the α-helix at the catalytic site is repositioned to further approach the substrate, facilitating the proton transfer during the phosphorylation. Furthermore, we elucidate that Lys101 functions to neutralize the negative charge developed at the β-, γ-bridging oxygen atom of ATP during phosphoryl transfer. We demonstrate that the dissociative catalytic reaction occurs via a direct phosphorylation pathway. This is the first study on the phosphorylation mechanism of a mevalonate pathway kinase. The elucidation of the catalytic mechanism not only sheds light on the common catalytic mechanism of GHMP kinase superfamily, but also provides the structural basis for engineering the mevalonate pathway kinases to further exploit their applications in the production of a wide range of fine chemicals such as biofuels or pharmaceuticals.