12 resultados para AIR-TEMPERATURE
Resumo:
We present chironomid-based temperature reconstructions from lake sediments deposited between ca 26,600 cal yr BP and 24,500 cal yr BP from Lyndon Stream, South Island, New Zealand. Summer (February mean) temperatures averaged 1 1C cooler, with a maximum inferred cooling of 3.7 1C. These estimates corroborate macrofossil and beetle-based temperature inferences from the same site and suggest climate amelioration (an interstadial) at this time. Other records from the New Zealand region also show a large degree of variability during the late Otiran glacial sequence (34,000–18,000 cal yr BP) including a phase of warming at the MIS 2/3 transition and a maximum cooling that did not occur until the global LGM (ca 20,000 cal yr BP). The very moderate cooling identified here at the MIS 2/3 transition confirms and enhances the long-standing discrepancy in New Zealand records between pollen and other proxies. Low abundances (o20%) of canopy tree pollen in records from late MIS 3 to the end of MIS 2 cannot be explained by the minor (o5 1C) cooling inferred from this and other studies unless other environmental parameters are considered. Further work is required to address this critical issue.
Resumo:
The analysis of chironomid taxa and environmental datasets from 46 New Zealand lakes identified temperature (February mean air temperature) and lake production (chlorophyll a (Chl a)) as the main drivers of chironomid distribution. Temperature was the strongest driver of chironomid distribution and consequently produced the most robust inference models. We present two possible temperature transfer functions from this dataset. The most robust model (weighted averaging-partial least squares (WA-PLS), n = 36) was based on a dataset with the most productive (Chl a > 10 lg l)1) lakes removed. This model produced a coefficient of determination (r2 jack) of 0.77, and a root mean squared error of prediction (RMSEPjack) of 1.31C. The Chl a transfer function (partial least squares (PLS), n = 37) was far less reliable, with an r2 jack of 0.49 and an RMSEPjack of 0.46 Log10lg l)1. Both of these transfer functions could be improved by a revision of the taxonomy for the New Zealand chironomid taxa, particularly the genus Chironomus. The Chironomus morphotype was common in high altitude, cool, oligotrophic lakes and lowland, warm, eutrophic lakes. This could reflect the widespread distribution of one eurythermic species, or the collective distribution of a number of different Chironomus species with more limited tolerances. The Chl a transfer function could also be improved by inputting mean Chl a values into the inference model rather than the spot measurements that were available for this study.
Resumo:
It has long been accepted that thermal and moisture regimes within stonework exert a major influence upon patterns of salt movement and, subsequently, the type and severity of salt-induced decay. For example, it is suggested that slow drying is more likely to bring dissolved salts to the surface, whereas rapid drying could result in the retention of some salt at or near the frequent wetting depth. In reality however, patterns of heating, cooling and surface wetting regimes that drive them – are complex and inconsistent responses to a wide range of environmental controls. As a first step to understanding the complexity of these relationships, this paper reports a series of experiments within a climatic cabinet designed to replicate the effects of short-term temperature fluctuations on the surface and sub-surface temperature regimes of a porous Jurassic limestone, and how they are influenced by surface wetting, ambient temperature and surface airflow. Preliminary results confirm the significance of very steep temperature/stress gradients within the outer centimetre or less of exposed stone under short-duration cycles of heating and cooling. This is important because this is the zone in which many stone decay processes, particularly salt weathering, operate, these processes invariably respond to temperature and moisture fluctuations, and short-term interruptions to insolation could, for example,
trigger these fluctuations on numerous occasions over a day. The data also indicate that there are complex patterns of temperature reversal with depth that are influenced in their intensity and location by surface wetting and moisture penetration, airflow across the surface and ambient air temperature. The presence of multiple temperature reversals and their variation over the course of heating and cooling phases belies previous assumtions of smooth, exponential increases and decreases in subsurface temperatures in response, for example to diurnal patterns of heating and cooling
Resumo:
The injection stretch blow moulding process involves the inflation and stretching of a hot preform into a mould to form bottles. A critical process variable and an essential input for process simulations is the rate of pressure increase within the preform during forming, which is regulated by an air flow restrictor valve. The paper describes a set of experiments for measuring the air flow rate within an industrial ISBM machine and the subsequent modelling of it with the FEA package ABAQUS. Two rigid containers were inserted into a Sidel SBO1 blow moulding machine and subjected to different supply pressures and air flow restrictor settings. The pressure and air temperature were recorded for each experiment enabling the mass flow rate of air to be determined along with an important machine characteristic known as the ‘dead volume’. The experimental setup was simulated within the commercial FEA package ABAQUS/Explicit using a combination of structural, fluid and fluid link elements that idealize the air flowing through an orifice behaving as an ideal gas under isothermal conditions. Results between experiment and simulation are compared and show a good correlation.
Resumo:
We use a network of cores from 77 peatland sites to determine controls on peat C content and peat C accumulation over the last 2000 years (since 2 ka) across Russia's West Siberian Lowland (WSL), the world's largest wetland region. Our results show a significant influence of fossil plant composition on peat C content, with peats dominated by Sphagnum having a lower C content. Radiocarbon-derived C accumulation since 2 ka at 23 sites is highly variable from site to site, but displays a significant N–S trend of decreasing accumulation at higher latitudes. Northern WSL peatlands show relatively small C accumulation of 7 to 35 kg C m-2 since 2 ka. In contrast, peatlands south of 60°N show larger accumulation of 42 to 88 kg C m-2. Carbon accumulation since 2 ka varies significantly with modern mean annual air temperature, with maximum C accumulation found between -1 and 0°C. Rates of apparent C accumulation since 2 ka show no significant relationship to long-term Holocene averages based on total C accumulation. A GIS-based extrapolation of our site data suggests that a substantial amount (~40%) of total WSL peat C has accumulated since 2 ka, with much of this accumulation south of 60°N. The large peatlands in the southern WSL may be an important component of the Eurasian terrestrial C sink, and future warming could result in a shift northward in long-term WSL C sequestration.
Resumo:
Temperature was recorded in 23 nests of the loggerhead turtle (Caretta caretta) and control sites of nest depth at Alagadi (35 degrees 33'N, 33 degrees 47'E), Northern Cyprus, eastern Mediterranean. Control site sand temperature was found to be highly correlated with mean daily air temperature and mean nest temperature. Mean temperature in nests ranged from 29.5 degreesC to 33.2 degreesC, with mean temperature in the middle third of incubation ranging from 29.3 degreesC to 33.7 degreesC. Hatching success was significantly correlated with incubation temperature, with nests experiencing very high temperatures exhibiting low hatching success. All nests demonstrated regular diel variation in temperature with mean daily fluctuations ranging from 0.3 degreesC to 1.4 degreesC. Increase in temperature above that of the prevailing sand temperature attributed to metabolic heating was clearly demonstrated in 14 of 15 clutches, with the mean level of metabolic heating of all nests being 0.4 degreesC. However, the level of metabolic heating varied markedly throughout the incubation period with levels being significantly higher in the final third of incubation. Incubation duration was found to be significantly correlated to both the mean temperature of nests throughout the incubation period and during the middle third of incubation. The relationship between incubation duration and mean incubation temperature was used to estimate mean incubation temperatures at most major nesting sites throughout the Mediterranean from available data on incubation durations, showing that mean incubation temperature is likely to be above 29.0 degreesC at most sites in most seasons. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The aim of this study was to develop an input/output mass balance to predict phosphorus retention in a five pond constructed wetland system (CWS) at Greenmount Farm, County Antrim, Northern Ireland. The mass balance was created using 14-months of flow data collected at inflow and outflow points on a weekly basis. Balance outputs were correlated with meteorological parameters, such as daily air temperature and hydrological flow, recorded daily onsite. The mass balance showed that phosphorus retention within the system exceeded phosphorus release, illustrating the success of constructed wetland systems to remove nutrients from agricultural effluent from a dairy farm. Pond 5 showed the greatest relative retention of 86%. Comparison of retention and mean air temperature highlighted a striking difference in trends between up-gradient and down-gradient ponds, with Ponds 1 and 2 displaying a positive quadratic relationship and ponds 3 through 5 displaying a negative quadratic relationship.
Resumo:
Cough reflex hypersensitization is a key feature in patients with troublesome cough. The clinical consequence of this hypersensitive state is typified by bouts of coughing often triggered by low threshold stimuli encountered by the patient during normal daily activities including exposure to aerosols, scents and odours, a change in air temperature and when talking or laughing. These features are often perceived by cough patients to be the most disruptive aspect of their condition and undoubtedly contribute to impaired quality of life. Patients with troublesome cough may describe a range of additional symptoms and sensations including an 'urge to cough' or the feeling of an 'itch' at the back of the throat, or a choking sensation and occasionally chest pain or breathlessness. It is uncertain if these features arise due to the processes responsible for cough reflex sensitization or as a direct consequence of the underlying cough aetiology. In an attempt to understand the clinical features of a sensitized cough reflex, the spectrum of symptoms typically described by cough patients will be reviewed and possible underlying mechanisms considered. Since an intact cough reflex is crucial to airway protection, anti-tussive treatment that attenuates the hypersensitive cough state rather than abolishing the cough reflex completely would be preferable. Identifying such agents remains a clinical, scientific and pharmacological challenge. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In spite of intensive research, computational modeling of the injection stretch blow molding (ISBM) still cannot match the accuracy of other polymer processes such as injection molding. There is a lack of understanding of the interdependence among the machine parameters set up by the operators, process parameters, material behavior, and the resulting final thickness distribution and performance of the molded product. The work presented in this paper describes a set of instrumentation tools developed for investigation of the ISBM process in an industrial setting. Results are presented showing the pressure and air temperature evolution inside the mold, the stretch rod force and displacement history, and the moment of contact of the polymer with seven discrete locations on the mold.
Resumo:
The injection stretch blow moulding process is used to manufacture PET containers used in the soft drinks and carbonated soft drinks industry. The process consists of a test tube like specimen known as a preform which is heated, stretch and blown into a mould to form the container. This research is focused on developing a validated simulation of the process thus enabling manufacturers to design their products in a virtual environment without the need to waste time, material and energy. The simulation has been developed using the commercial FEA package Abaqus and has been validated using state of the art data acquisition system consisting of measurements for preform temperature (inner and outer wall) using a device known as THERMOscan (Figure 1), stretch rod force and velocity, internal pressure and air temperature inside the preform using an instrumented stretch rod and the?exact?timing of when the preform touches the mould wall using contact sensors.? In addition, validation studies have also been performed by blowing a perform without a mould and using high sped imaging technology in cooperation with an advanced digital image correlation system (VIC 3D) to provided new quantitative information on the behaviour of PET during blowing.? The approach has resulted in a realistic simulation in terms of accurate input parameters, preform shape evolution and prediction of final properties.
Resumo:
Chronic cough is a common and frequently disruptive symptom which can be difficult to treat with currently available medicines. Asthma/eosinophilic airway disease and gastro-oesophageal reflux disease are most commonly associated with chronic cough but it may also trouble patients with chronic obstructive pulmonary disease, pulmonary fibrosis and lung cancer. Over the last three decades there have been a number of key advances in the clinical approach to cough and a number of international guidelines on the management of cough have been developed. Despite the undoubted benefit of such initiatives, more effective treatments for cough are urgently needed. The precise pathophysiological mechanisms of chronic cough are unknown but central to the process is sensitization (upregulation) of the cough reflex. One well-recognized clinical consequence of this hypersensitive state is bouts of coughing triggered by apparently trivial provocation such as scents and odours and changes in air temperature. The main objective of new treatments for cough would be to identify ways to downregulate this heightened cough reflex but yet preserve its crucial role in protecting the airway. The combined efforts of clinicians, scientists and the pharmaceutical industry offer most hope for such a treatment breakthrough. The aim of this chapter is to provide some rationale for the current treatment recommendations and to offer some reflections on the management of patients with chronic cough.
Resumo:
The overall aim of the project was to study the influence of process variables on the distribution of a model active pharmaceutical ingredient (API) during fluidised melt granulation of pharmaceutical granules with a view of optimising product characteristics. Granules were produced using common pharmaceutical excipients; lactose monohydrate using poly ethylene glycol (PEG1500) as a meltable binder. Methylene blue was used as a model API. Empirical models relating the process variables to the granules properties such as granule mean size, product homogeneity and granule strength were developed using the design of experiment approach. Fluidising air velocity and fluidising air temperature were shown to strongly influence the product properties. Optimisation studies showed that strong granules with homogeneous distribution of the active ingredient can be produced at high fluidising air velocity and at high fluidising air temperatures.