21 resultados para AHS
Resumo:
The introduction of advanced welding methods as an alternative joining process to riveting in the manufacture of primary aircraft structure has the potential to realize reductions in both manufacturing costs and structural weight. However, welding processes can introduce undesirable residual stresses and distortions in the final fabricated components, as well as localized loss of mechanical properties at the weld joints. The aim of this research is to determine and characterize the key process effects of advanced welding assembly methods on stiffened panel static strength performance. This in-depth understanding of the relationships between welding process effects and buckling and collapse strength is required to achieve manufacturing cost reductions without introducing structural analysis uncertainties and hence conservative over designed welded panels. This current work is focused at the sub-component level and examines the static strength of friction stir welded multi stiffener panels. The undertaken experimental and computational studies have demonstrated that local skin buckling is predominantly influenced by the magnitude of welding induced residual stresses and associated geometric distortions, whereas panel collapse behavior is sensitive to the lateral width of the physically joined skin and stiffener flange material, the strength of material in the Heat Affected Zone as well as the magnitude of the welding induced residual stresses. Copyright © 2006 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
--------------------------------------------------------------------------------
Reaxys Database Information
|
Resumo:
This paper considers the ways in which structural model parameter variability can in?uence aeroelastic stability. Previous work on formulating the stability calculation (with the Euler equations providing the aerodynamic predictions) is exploited to use Monte Carlo, Interval and Perturbation calculations to allow this question to be investigated. Three routes are identi?ed. The ?rst involves variable normal mode frequencies only. The second involves normal mode frequencies and mode shapes. Finally, the third, in addition to normal mode frequencies and mode shapes, also includes their in?uence on the static equilibrium. Previous work has suggested only considering route 1, which allows signi?cant gains in computational e?ciency if reduced order models can be built for the aerodynamics. However, results in the current paper show that neglecting route 2 can give misleading results for the ?utter onset prediction.