63 resultados para ABDOMINAL FAT
Resumo:
Numerous epidemiological studies have examined the association between physical activity and pancreatic cancer; however, findings from individual cohorts have largely not corroborated a protective effect. Among other plausible mechanisms, physical activity may reduce abdominal fat depots inducing metabolic improvements in glucose tolerance and insulin sensitivity, thereby potentially attenuating pancreatic cancer risk. We performed a systematic review to examine associations between physical activity and pancreatic cancer. Six electronic databases were searched from their inception through July 2009, including MEDLINE and EMBASE, seeking observational studies examining any physical activity measure with pancreatic cancer incidence/mortality as an outcome. A random effects model was used to pool individual effect estimates evaluating highest vs. lowest categories of activity. Twenty-eight studies were included. Pooled estimates indicated a reduction in pancreatic cancer risk with higher levels of total (five prospective studies, RR: 0.72, 95% CI: 0.52-0.99) and occupational activity (four prospective studies, RR: 0.75, 95% CI: 0.59-0.96). Nonsignificant inverse associations were seen between risks and recreational and transport physical activity. When examining exercise intensity, moderate activity appeared more protective (RR: 0.79, 95% CI: 0.52-1.20) than vigorous activity (RR: 0.97, 95% CI: 0.85-1.11), but results were not statistically significant and the former activity variable incorporated marked heterogeneity. Despite indications of an inverse relationship with higher levels of work and total activity, there was little evidence of such associations with recreational and other activity exposures.
Resumo:
Diet-induced obesity can induce low-level inflammation and insulin resistance. Interleukin-1β (IL-1β) is one of the key proinflammatory cytokines that contributes to the generation of insulin resistance and diabetes, but the mechanisms that regulate obesity-driven inflammation are ill defined. Here we found reduced expression of the E3 ubiquitin ligase Pellino3 in human abdominal adipose tissue from obese subjects and in adipose tissue of mice fed a high-fat diet and showing signs of insulin resistance. Pellino3-deficient mice demonstrated exacerbated high-fat-diet-induced inflammation, IL-1β expression, and insulin resistance. Mechanistically, Pellino3 negatively regulated TNF receptor associated 6 (TRAF6)-mediated ubiquitination and stabilization of hypoxia-inducible factor 1α (HIF1α), resulting in reduced HIF1α-induced expression of IL-1β. Our studies identify a regulatory mechanism controlling diet-induced insulin resistance by highlighting a critical role for Pellino3 in regulating IL-1β expression with implications for diseases like type 2 diabetes.
Resumo:
OBJECTIVE: Abdominal obesity is associated with increased risk of type 2 diabetes (T2D) and cardiovascular disease. The aim of this study was to assess whether metabolomic markers of T2D and blood pressure (BP) act on these traits via visceral fat (VF) mass.
METHODS: Metabolomic profiling of 280 fasting plasma metabolites was conducted on 2,401 women from TwinsUK. The overlap was assessed between published metabolites associated with T2D, insulin resistance, or BP and those that were identified to be associated with VF (after adjustment for covariates) measured by dual-energy X-ray absorptiometry.
RESULTS: In addition to glucose, six metabolites were strongly associated with both VF mass and T2D: lactate and branched-chain amino acids, all of them related to metabolism and the tricarboxylic acid cycle; on average, 38.5% of their association with insulin resistance was mediated by their association with VF mass. Five metabolites were associated with BP and VF mass including the inflammation-associated peptide HWESASXX, the steroid hormone androstenedione, lactate, and palmitate. On average, 29% of their effect on BP was mediated by their association with VF mass.
CONCLUSIONS: Little overlap was found between the metabolites associated with BP and those associated with insulin resistance via VF mass.