3 resultados para A(4) symmetry
Resumo:
Molecules bonded between two metal contacts form the simplest possible molecular devices. Coupled by the molecule, the left and right contact-based states form symmetric and antisymmetric pairs near the Fermi level. We relate the size of the resulting energy splitting DeltaE to the symmetry and degree of delocalization of the coupling molecular orbital. Qualitative trends in molecular conductances are then estimated from the variations in DeltaE. We examine benzenedithiol and other molecules of interest in transport. (C) 2005 American Institute of Physics.
Resumo:
In chloroform, [RuCl2(nbd)(py)(2)] (1) (nbd = norbornadiene; py = pyridine) reacts with 1,4-bis(diphenylphosphino)-1,2,3,4-tetramethyl-1,3-butadiene (1,2,3,4-Me-4-NUPHOS) to give the dimer [Ru2Cl3(eta(4)-1,2,3,4-Me-4-NUPHOS)(2)]Cl (2a), whereas, in THF [RuCl2(1,2,3,4-Me-4-NUPHOS)(PY)(2)] (3) is isolated as the sole product of reaction. Compound 2 exists as a 4:1 mixture of two noninterconverting isomers, the major with C, symmetry and the minor with either C, or C-2 symmetry. A single-crystal X-ray analysis of [Ru2Cl3 (eta(4)-1,2,3,4-Me-4-NUPHOS)(2)] [SbF6] (2b), the hexafluoroantimonate salt of 2a, revealed that the diphosphine coordinates in an unusual manner, as a eta(4)-six-electron donor, bonded through both P atoms and one of the double bonds of the butadiene tether. Compounds 2a and 3 react with 1,2-ethylenediamine (en) in THF to afford [RuCl2(1,2,3,4-Me-4-NUPHOS)(en)] (4), which rapidly dissociates a chloride ligand in chloroform to give [RuCl(eta(4)-1,2,3,4-Me-4-NUPHOS)(en)] [Cl] (5a). Complexes 4 and 5a cleanly and quantitatively interconvert in a solvent-dependent equilibrium, and in THF 5a readily adds chloride to displace the eta(2)-interaction and re-form 4. A single-crystal X-ray structure determination of [RuCl(eta(4)-1,2,3,4-Me-4-NUPHOS)(en)][ClO4] (5b) confirmed that the diphosphine coordinates in an eta(4)-manner as a facial six-electron donor with the eta(2)-coordinated double bond occupying the site trans to chloride. The eta(4)-bonding mode can be readily identified by the unusually high-field chemical shift associated with the phosphorus atom adjacent to the eta(2)-coordinated double bond. Complexes 2a, 2b, 4, and 5a form catalysts that are active for transfer hydrogenation of a range of ketones. In all cases, catalysts formed from precursors 2a and 2b are markedly more active than those formed from 4 and 5a.
Resumo:
In this paper we investigate the azimuthal pattern symmetry of an Archimedean spiral antenna which is designed to operate over the frequency range 3-10 GHz. The performance of the spiral in free space is compared with a structure that is backed by a perfect electric conductor with a separation distance of ?/4 at the operating frequencies. The latter arrangement exhibits a higher gain, however it is observed that the radiation patterns are less symmetrical about boresight and this performance degradation increases with frequency. The predicted 3 dB beamwidth difference is shown to vary between 14° (3 GHz) and 51° (10 GHz). An improved antenna design is described which reduces the pattern asymmetry to ˜ 2° at 10 GHz. The reduction in modal contamination is obtained by inserting slots carefully arranged in a radial pattern to disrupt the surface currents that flow on the ground plane of the antenna