2 resultados para 829
Resumo:
The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher–catcher scenario, anisotropy in neutron emission was studied for the deuterium–deuterium fusion reaction. Simulation results are consistent with the narrow-divergence ( ∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.
Resumo:
We report 3 au resolution imaging observations of the protoplanetary disk aroundTW Hya at 145 and 233 GHz with the Atacama Large Millimeter/Submillimeter Array.Our observations revealed two deep gaps (~25-50 %) at 22 and 37 au and shallowergaps (a few %) at 6, 28, and 44 au, as recently reported by Andrews et al. (2016). Thecentral hole with a radius of 3 au was also marginally resolved. The most remarkablefinding is that the spectral index α(R) between bands 4 and 6 peaks at the 22 au gap.The derived power-law index of the dust opacity β(R) is ~1.7 at the 22 au gap anddecreases toward the disk center to ~0. The most prominent gap at 22 au could becaused by the gravitational interaction between the disk and an unseen planet with amass of ≲1.5 MNeptune although other origins may be possible. The planet-induced gap is supported by the fact that β(R) is enhanced at the 22 au gap, indicating a deficitof mm-sized grains within the gap due to dust filtration by a planet.