56 resultados para 700-mu-mol Mol(-1) Co2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dipeptidyl peptidase IV (DPP IV) is the primary inactivator of glucoregulatory incretin hormones. This has lead to development of DPP IV inhibitors as a new class of agents for the treatment of type 2 diabetes. Recent reports indicate that other antidiabetic drugs, such as metformin, may also have inhibitory effects on DPP IV activity. In this investigation we show that high concentrations of several antidiabetic drug classes, namely thiazolidinediones, sulphonylureas, meglitinides and morphilinoguanides can inhibit DPP IV The strongest inhibitor nateglinide, the insulin-releasing meglitinide was effective at low therapeutically relevant concentrations as low as 25 mu mol/l. Nateglinide also prevented the degradation of glucagon-like peptide-1 (GLP-1) by DPP IV in a time and concentration-dependent manner. In vitro nateglinide and GLP-1 effects on insulin release were additive. In vivo nateglinide improved the glucose-lowering and insulin-releasing activity of GLP-1 in obese-diabetic ob/ob mice. This was accompanied by significantly enhanced circulating concentrations of active GLP-1(7-36)amide and lower levels of DPP IV activity. Nateglinide similarly benefited the glucose and insulin responses to feeding in ob/ob mice and such actions were abolished by coadministration of exendin(9-39) and (Pro(3))GIP to block incretin hormone action. These data indicate that the use of nateglinide as a prandial insulin-releasing agent may partly rely on inhibition of GLP-1 degradation as well as beta-cell K-ATP channel inhibition. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among microporous systems metal organic frameworks are considered promising materials for molecular adsorption. In this contribution infrared spectroscopy is successfully applied to highlight the positive role played by coordinatively unsaturated Cu2+ ions in HKUST-1, acting as specific interaction sites. A properly activated material, obtained after solvent removal, is characterized by a high fraction of coordinatively unsaturated Cu2+ ions acting as preferential adsorption sites that show specific activities towards some of the most common gaseous species (NO, CO2, CO, N-2 and H-2). From a temperature dependent IR study, it has been estimated that the H-2 adsorption energy is as high as 10 kJ mol(-1). A very complex spectral evolution has been observed upon lowering the temperature. A further peculiarity of this material is the fact that it promotes ortho-para conversion of the adsorbed H-2 species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrrolo-1,5-benzoxazepine-15 (PBOX-15) is a novel microtubule depolymerization agent that induces cell cycle arrest and subsequent apoptosis in a number of cancer cell lines. Chronic lymphocytic leukemia (CLL) is characterized by clonal expansion of predominately nonproliferating mature B cells. Here, we present data suggesting PBOX-15 is a potential therapeutic agent for CLL. We show activity of PBOX-15 in samples taken from a cohort of CLL patients (n = 55) representing both high-risk and low-risk disease. PBOX-15 exhibited cytotoxicity in CLL cells (n = 19) in a dose-dependent manner, with mean IC(50) of 0.55 mu mol/L. PBOX-15 significantly induced apoptosis in CLL cells (n = 46) including cells with poor prognostic markers: unmutated IgV(II) genes, CD38 and zeta-associated protein 70 (ZAP-70) expression, and fludarabine-resistant cells with chromosomal deletions in 17p. In addition, PBOX-15 was more potent than fludarabine in inducing apoptosis in fludarabine-sensitive cells. Pharmacologic inhibition and small interfering RNA knockdown of caspase-8 significantly inhibited PBOX-15-induced apoptosis. Pharmacologic inhibition of c-jun NH(2)-terminal kinase inhibited PBOX-15-induced apoptosis in mutated IgV(II) and ZAP-70(-) CLL cells but not in unmutated IgV(II) and ZAP-70(+) cells. PBOX-15 exhibited selective cytotoxicity in CLL cells compared with normal hematopoietic cells. Our data suggest that PBOX-15 represents a novel class of agents that are toxic toward both high-risk and low-risk CLL cells. The need for novel treatments is acute in CLL, especially for the subgroup of patients with poor clinical outcome and drug-resistant disease. This study identifies a novel agent with significant clinical potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fucus and Laminaria species, dominant seaweeds in the intertidal and subtidal zones of the temperate North Atlantic, experience tidal cycles that are not synchronized with light:dark (L:D) cycles. To investigate how nutrient assimilation is affected by light cycles, the activity of nitrate reductase (NR) was examined in thalli incubated in outdoor tanks with flowing seawater and natural L:D cycles. NR activity in Laminaria digitata (Huds.) Lamour. showed strong diel patterns with low activities in darkness and peak activities near midday. This diel pattern was controlled by light but not by a circadian rhythm. In contrast, there was no diel variation in NR activity in Fucus serratus L., F. vesiculosus (L.) Lamour., and F. spiralis L. either collected directly from the shore or maintained in the outdoor tanks. In laboratory cultures, transfer to continuous darkness suppressed NR activity in L. digitata, but not in F. vesiculosus; continuous light increased NR activity in L. digitata but decreased activity in F. vesiculosus. Furthermore, 4 d enrichment with ammonium (50 mu mol . L-1 pulses), resulted in NR activity declining by > 80% in L. digitata, but no significant changes in F. serratus. Seasonal differences in maximum NR activity were present in both genera with activities highest in late winter and lowest in summer. This is the first report of NR activity in any alga that is not strongly regulated by light and ammonium. Because light and tidal emersion do not always coincide, Fucus species may have lost the regulation of NR by light that has been observed in other algae and higher plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obestatin is a recently discovered peptide hormone that appears to be involved in reducing food intake, gut motility and body weight. Obestatin is a product of the preproghrelin gene and appears to oppose several physiological actions of ghrelin. This study investigated the acute effects of obestatin (1-23) and the truncated form, obestatin (11-23), on feeding activity, glucose homeostasis or insulin secretion. Mice received either intraperitoneal obestatin (1-23) or (11-23) (1 mu mol/kg) 4 h prior to an allowed 15 min period of feeding. Glucose excursions and insulin responses were lowered by 64-77% and 39-41%, respectively, compared with saline controls. However this was accompanied by 43% and 53% reductions in food intake, respectively. The effects of obestatin peptides were examined under either basal or glucose (18 mmol/kg) challenge conditions to establish whether effects were independent of changes in feeding. No alterations in plasma glucose or insulin responses were observed. In addition, obestatin peptides had no effect on insulin sensitivity as revealed by hypoglycaemic response when co-administered with insulin. Our observations support a role for obestatin in regulating metabolism through changes of appetite, but indicate no direct actions on glucose homeostasis or insulin secretion. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytoplankton biomass and rate of production were measured along a transect from 57.54 degreesN to 37.01 degreesN in the northeast Atlantic during July 1996 and at a series of stations over a 7-day period at 37 degreesN 20 degreesW. Surface nutrient concentrations ranged from 4 mu mol l(-1) NO3-, and 0.35 mu mol l(-1) PO43- at 57.54 degreesN to <10 nmol l(-1) NO3- and similar to 10 nmol l(-1) PO43- at 37.01 degreesN. The greatest phytoplankton biomass and production were measured in the vicinity of a frontal system at 50 degreesN, and there was a general decline in total phytoplankton biomass and production to the south of the transect. Production was measured in three size fractions. At the station with the highest chlorophyll concentrations (50.34 degreesN), phytoplankton cells larger than 5 mum dominated the assemblage, accounting for 72% of the chlorophyll concentration (22.9 mg m(-2)) and 51% of primary production (54.1 mmol Cm-2 d(-1)), but picophytoplankton production was also high (43%). At 57 degreesN, carbon fixation by the > 5 mum fraction accounted for 75% of the daily production of 60.75 mmol Cm-2 d(-1). At 37 degreesN, picophytoplankton was the dominant group, accounting for similar to 58% (10 mg m(-2)) of chlorophyll and similar to 64% (46 mmol Cm-2 d(-1)), of primary production. Nitrate, ammonium and phosphate uptake rates also were determined. Although high nitrate uptake rates were measured in the surface water at similar to 50 degreesN, the greatest uptake rates of both depth-integrated nitrate and ammonium were at the south of the transect. At 37 degreesN, a deep euphotic zone was present and light penetrated through the nitracline; total nitrate uptake was enhanced because of assimilation at the base of the euphotic zone. As a consequence, high values of depth-integrated f-ratio were measured in the oligotrophic waters at the south of the transect. Phosphate was predominantly incorporated into the picoplankton fraction, which included heterotrophic and autotrophic components, at all stations and a significant proportion of phosphate uptake occurred in the dark. The C:N:P assimilation ratios were variable throughout the region; phosphate uptake was generally greater than would be expected if nutrient assimilation were in proportion to the Redfield ratio. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data are summarised for two Lagrangian experiments in the North Atlantic in early summer 1996. At 59 degreesN 20 degreesW, plankton dynamics was studied in an SF, tracer release experiment within a mesoscale eddy over a 9-day period. At 37 degreesN 20 degreesW, a second experiment followed a drifting buoy for 7 days. The data obtained in these two experiments have been averaged for 3 depth strata; the euphotic zone, the surface mixed layer (SML), and the seasonal thermocline immediately beneath the surface mixed layer. At 59 degreesN, the euphotic zone was only marginally deeper than the SML, but at 37 degreesN the SML was ca 30 m and the euphotic depth was ca 110 m. At 37 degreesN, nutrient concentrations in the SML were low but significant new production occurred in the thermocline because of light penetration into the nutricline. The particulate organic carbon (POC) concentration of the SML at 59 degreesN was 13-15 mu mol C kg(-1), but at 37 degreesN POC concentrations were 4 mu mol C kg(-1). These POC measurements include biota and detritus. As a way of investigating latitudinal differences in the plankton communities, estimates have been made of the carbon and nitrogen content of phytoplankton, bacterioplankton, microzooplankton and mesozooplankton. At both 59 degreesN and 37 degreesN, phytoplankton was the largest component, accounting for ca 50% of the planktonic biomass in the SML. At 59 degreesN, microzooplankton was 16% of the planktonic carbon, but at 37 degreesN this reduced to 8% of the total. Mesozooplankton was a relatively constant proportion (ca 20%) of the planktonic carbon in the SML at both 59 degreesN and 37 degreesN. Bacterioplankton was 14% of the biomass at 59 degreesN, increasing to 24% in the microbial loop-dominated system at 37 degreesN. Mean carbon fixation rate in the oligotrophic southern station was 24% of that at the north, with more carbon fixation below the SML at 37 degreesN than at 59 degreesN. Respiration rates showed little variation with latitude, and the rates at 37 degreesN were 80% of those at 59 degreesN. Nitrate and ammonium uptake rates were very low in the oligotrophic conditions in the SML at 37 degreesN, but nitrate uptake in the euphotic zone was comparable to that at 59 degreesN. Ammonium uptake by phytoplankton was also significantly greater at 37 degreesN, in both the euphotic zone and thermocline, but uptake in the SML was only 20% of that in the SML at 59 degreesN. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the addition of acetonitrile on the solubility of carbon dioxide in an ionic liquid, the 1-ethyl-3- methylimidazolium bis(trifluoromethanesulfonyl)amide, [C(2)mim][NTf2], was studied experimentally at pressures close to atmospheric and as a function of temperature between 290 and 335 K. It was observed that the solubility of carbon dioxide decreases linearly with the mole fraction of acetonitrile from a value of 2.6 x 10(-2) in the pure ionic liquid at 303 K to a mole fraction of 1.3 x 10(-2) in the mixture [C(2)mim][NTf2] + CH3CN with x(CH3CN) = 0.77 at the same temperature. The gas solubility decreases with temperature, and the thermodynamic properties of solvation could be calculated. The vapor pressures of the [ C2mim][ NTf2] + CH3CN mixtures were measured in the same temperature range, and strong negative deviations from Raoult's law were obtained: up to 36% for a mixture with x(CH3CN) = 0.46 at 334 K. Negative excess molar volumes of approximately -1 cm(3) mol(-1) at equimolar composition could also be calculated from density measurements of the pure components and of the mixtures. These observations are confirmed by neutron diffraction studies and are compatible with the existence of strong ion-dipole interactions in the mixed liquid solvent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Published ab-initio and pseudopotential calculations for the dialkali halide systems suggest that the preferred co-linear geometry is for the metal to approach the metal end of the alkali halide. Here, ab-initio calculations on the Li2F system reveal that the well depth on the halide side in this radical is much deeper and is a local saddle-point associated with the ionic non-linear global minima. Although many features of the pseudopotential surfaces are confirmed, significant differences are apparent including the existence of a linear excited state instead of a triangular one, a considerably deeper global minimum some 50% lower in energy and a close approach between the X2A1 and the states, with the minimum 87 kJ mol-1 below the ground state asymptote. All the results can be rationalised as the avoided crossings between a long range, covalent potential dominant within the LiLiF geometry and an ionic state that forms the global minimum. Calculations on the 3rd 2A' potential indicate that even for Li + LiF collisions at ultracold temperatures the collision dynamics could involve as many as three electronic states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of such solutes such as halides and water on the physical properties of room temperature ionic liquids (RTILs) have been extensively studied, This work examines the effect of the solute carbon dioxide on the RTIL 1-ethyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([C(2)mim][NTf2]) and its influence on the electrochemical characterization of the important redox couple ferrocene/ferrocenium (Fc/Fc(+)). The system was studied using cyclic voltammetry, chronoamperometry, and electron spin resonance (ESR) spectroscopy. Addition Of 100% CO2 to a solution of Fc in [C(2)mim][NTf2] resulted in a substantial increase in both the limiting oxidative current and diffusion coefficient of Fc. Arrhenius plots of Fc diffusion coefficients in the pure and CO2-saturated ionic liquid revealed a decrease in activation energy of translational diffusion from 29.0 (+/- 0.5) kJ mol(-1) to 14.7 (+/- 1.6) kJ mol(-1), suggesting a reduction in the viscosity of the ionic liquid with addition Of CO2. ESR spectroscopy was then used to calculate the rotational correlation coefficients of a probe molecule, 2,2,6,6-tetramethyl-1-piperinyloxyl (TEMPO), to add supporting evidence to this hypothesis. Arrhenius plots of rotational correlation coefficients in the pure and CO2-saturated ionic liquid resulted in a similar drop in activation energy from 28.7 (+/- 2.1) kJ mol(-1) to 18.2 (+/- 5.6) kJ mol(-1). The effect of this solute on the ionic liquid [C(2)mim][NTf2] and on the electrochemical measurements of the Fc/Fc(+) couple emphasizes the necessity of fastidious sample preparation, as it is clear that the voltammetric currents of the electroactive species under study are influenced by the presence of CO2 in solution. The voltammetric response of the electroactive species in RTILs cannot be assumed to be independent of other solutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe perfluoropolyether (PFPE) surfactants which are capable of stabilising the water/CO2 interface and present FTIR spectroscopic evidence for the formation of water in supercritical carbon dioxide microemulsions. A wide variety of single chain surfactants of differing chain lengths but similar structure has been screened and the effect of the surfactant chain length on the water uptake was studied. The ammonium carboxylate of the PFPE surfactant Krytox FSL(TM) with an average molecular weight of 2500 g mol(-1) was demonstrated to be the surfactant capable of dissolving the most water out of all the tested surfactants and hence to have the optimum chain length. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The association of very-low-density lipoprotein (VLDL) with atherosclerosis remains controversial. However, studies have shown that oxidative modification of VLDL can promote foam cell formation, leading to the development of atherosclerosis. A rapid method is described which will allow the significance of VLDL oxidation to be assessed in clinical studies. VLDL was isolated from heparinized plasma by a 1-h, single spin ultracentrifugation. Total protein was standardized to 25 mg/L. Oxidation was promoted by the addition of copper ions (17.5 mu mol/L, final concentration) incubated at 37 degrees C. Conjugated diene production was followed at 234 nm. Total assay preparation time was 2 h. Urate greatly inhibited the oxidation of VLDL and was successfully removed by size exclusion chromatography. VLDL isolated from frozen plasma (-70 degrees C) was stable for 15 weeks. This simple, rapid method for the isolation of VLDL may be applied to assess the significance of VLDL oxidation in disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for the hydrothermal synthesis of a single layer of zeolite Beta crystals on a molybdenum substrate for microreactor applications has been developed. Before the hydrothermal synthesis, the surface of the substrate was modified by an etching procedure that increases the roughness at the nanoscale level without completely eliminating the surface lay structure. Then, thin films of Al2O3 (170 nm) and TiO2 (50 nm) were successively deposited by atomic layer deposition (ALD) on the substrate. The internal Al2O3 film protects the Mo substrate from oxidation up to 550 degrees C in an oxidative environment. The high wettability of the external TiO2 film after UV irradiation increases zeolite nucleation on its surface. The role of the metal precursor (TiCl4 vs TiI4), deposition temperature (300 vs 500 degrees C), and film thickness (50 vs 100 nm) was investigated to obtain titania films with the slowest decay in the superhydrophilic behavior after UV irradiation. Zeolite Beta coatings with a Si/Al ratio of 23 were grown at 140 degrees C for 48 It. After ion exchange with a 10(-4) M cobalt acetate solution, the activity of the coatings was determined in the ammoxidation of ethylene to acetonitrile in a microstructured reactor. A maximum reaction rate of 220 mu mol C2H3N g(-1) s(-1) was obtained at 500 degrees C, with 42% carbon selectivity to acetonitrile. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different plasticizers, including phosphate-, phthalate-and adipate-based types were used in the creation of a range of colorimetric plastic film sensors for CO2, The different types of plasticizer used in the formulation of a colorimetric plastic film sensor for CO2 affect the response and recovery times of the sensor differently, An effective plasticizer was taken as one that decreased the response and recovery times of the final film sensor when exposed to an alternating atmosphere of 0-5% CO2. On this basis, the most efficient plasticizers appeared to be phosphate-based, followed by phthalate- and adipate-based plasticizers, This trend appears to reflect the degree of the polymer-plasticizer compatibility. Increasing the amount of plasticizer in the film formulation decreased the response and recovery times of the sensor dramatically, The sensitivity of the film sensor towards CO2 appears to decrease with increasing plasticizer effectiveness; thus, the general order of film CO2 sensitivity with respect to plasticizer type was found to be adipate > phthalate > phosphate. In general, the response of the optical films towards CO2 was found to be temperature sensitive [typically, Delta H = -(44-55) kJ mol(-1)], The phosphate-based plasticized films appear to be less temperature sensitive than the other plasticized films, and 2-ethylhexyl diphenylphosphate appears particularly effective in this respect (Delta H = -18.5 kJ mol(-1)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of the photomineralization of salicylic acid (SA) sensitized by Degussa P25 titanium dioxide (TiO2) dispersions in oxygenated aqueous solution are reported as a function of the following experimental parameters: [TiO2], percentage of O-2, [SA], temperature (T) and light intensity (I). The kinetics of SA photomineralization conform to a Langmuir-Hinshelwood kinetic scheme with SA and O-2 adsorbed at different sites with apparent Langmuir adsorption coefficients of (6.1 +/- 1.2) x 10(4) mol(-1) dm(3) and 0.061 +/- 0.007 kPa(-1) respectively. The overall activation energy for the system was determined as 4.6 +/- 0.2 kJ mol(-1). Two major stable reaction intermediates are identified (dihydroxybenzoic acids (DHBA) and catechol (C)) and the existence of a further pathway involving one or more very unstable and, as yet, unidentified reaction intermediates is proposed. A kinetic model is presented which describes the temporal behaviour of the concentrations of SA, CO2 and the major photogenerated intermediates (DHBA and C). This model is used to predict successfully the temporal behaviour of the major intermediates in the photomineralization of SA under non-standard conditions.