118 resultados para 5-nitrosalicylic acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aminolevulinic acid (ALA) stability within topical formulations intended for photodynamic therapy (PDT) is poor due to dimerisation to pyrazine-2,5-dipropionic acid (PY). Most strategies to improve stability use low pH vehicles, which can cause cutaneous irritancy. To overcome this problem, a novel approach is investigated that uses a non-aqueous vehicle to retard proton-induced charge separation across the 4-carbonyl group on ALA and lessen nucleophilic attack that leads to condensation dimerisation. Bioadhesive anhydrous vehicles based on methylvinylether-maleic anhydride copolymer patches and poly(ethyleneglycol) or glycerol thickened poly(acrylic acid) gels were formulated. ALA stability fell below pharmaceutically acceptable levels after 6 months, with bioadhesive patches stored at 5°C demonstrating the best stability by maintaining 86.2% of their original loading. Glycerol-based gels maintained 40.2% in similar conditions. However, ALA loss did not correspond to expected increases in PY, indicating the presence of another degradative process that prevented dimerisation. Nuclear magnetic resonance (NMR) analysis was inconclusive in respect of the mechanism observed in the patch system, but showed clearly that an esterification reaction involving ALA and both glycerol and poly(ethyleneglycol) was occurring. This was especially marked in the glycerol gels, where only 2.21% of the total expected PY was detected after 204 days at 5°C. Non-specific esterase hydrolysis demonstrated that ALA was recoverable from the gel systems, further supporting esterified binding within the gel matrices. It is conceivable that skin esterases could duplicate this finding upon topical application of the gel and convert these derivatives back to ALA in situ, provided skin penetration is not affected adversely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

opical administration of excess exogenous 5-aminolevulinic acid (ALA) leads to selective accumulation of the potent photosensitiser protoporphyrin IX (PpIX) in neoplastic cells, which can then be destroyed by irradiation with visible light. Due to its hydrophilicity, ALA penetrates deep lesions, such as nodular basal cell carcinomas (BCCs) poorly. As a result, more lipophilic esters of ALA have been employed to improve tissue penetration. In this study, the in vitro release of ALA and M-ALA from proprietary creams and novel patch-based systems across normal stratum corneum and a model membrane designed to mimic the abnormal stratum corneum overlying neoplastic skin lesions were investigated. Receiver compartment drug concentrations were compared with the concentrations of each drug producing high levels of PpIX production and subsequent light-induced kill in a model neoplastic cell line (LOX). LOX cells were found to be quite resistant to ALA- and M-ALA-induced phototoxicity. However, drug concentrations achieved in receiver compartments were comparable to those required to induce high levels of cell death upon irradiation in cell lines reported in the literature. Patches released significantly less drug across normal stratum corneum and significantly more across the model membrane. This is of major significance since the selectivity of PDT for neoplastic lesions will be further enhanced by the delivery system. ALA/M-ALA will only be delivered in significant amounts to the abnormal tissue. PpIX will only then accumulate in the neoplastic cells and the normal surrounding tissue will be unharmed upon irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photodynamic therapy of deep or nodular skin tumours is currently limited by the poor tissue penetration of the porphyrin precursor 5-aminolevulinic acid (ALA). In this study, silicon microneedle arrays were used, for the first time, to enhance skin penetration of ALA in vitro and in vivo. Puncturing excised murine skin with 6x7 arrays of microneedles 270 mum in height, with a diameter of 240 mum at the base and an interspacing of 750 mum led to a significant increase in transdermal delivery of ALA released from a bioadhesive patch containing 19 mg ALA cm(-2). Microneedle puncture enhanced ALA delivery to the upper regions of excised porcine skin but, at mean depths of 1.875 mm, ALA concentrations were similar to control values, possibly reflecting binding of ALA by tissue components. However, and importantly, in vivo experiments using nude mice showed that microneedle puncture could reduce application time and ALA dose required to induce high levels of the photosensitiser protoporphyrin IX in skin. This clearly has implications for clinical practice, as shorter application times would mean improved patient and clinician convenience and also that more patients could be treated in the same session. As ALA is expensive and degrades rapidly via a second order reaction, reducing the required dose is also a notable advantage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The work in this study appraised photodynamic treatment (PDT) as a treatment method for vulval intraepithelial neoplasia (VIN) using a novel bioadhesive patch to deliver aminolevulinic acid. An analysis of changes in expression of apoptotic and cell cycle proteins (p53, p21, Mdm2, Blc-2, Bax, Ki-67) in response to PDT was evaluated. Methods: PDT was performed using non-laser light, either as a one or two-cycle treatment, with clinical and pathological assessment following after 6 weeks. Twenty-three patients with 25 VIN lesions underwent 49 cycles of PDT Patches were designed to conform to uneven vulval skin and contained 38 mg cm(-2) aminolevulinic acid. Assessment was carried out at 6 weeks post-treatment. Patient-based treatment assessment, along with clinical and pathological changes, were monitored. Immunohistochemical staining was used to elucidate a possible biomolecular basis for induced cellular changes. Results: Most patients (52%) reported a symptomatic response, with normal pathology restored in 38% of lesions. The patch was easy to apply and remove, causing minimal discomfort. Fluorescence inspection confirmed protoporphyrin accumulation. Pain during implementation of PDT was problematic, necessitating some form of local analgesia. Changes in expression of cell cycle and apoptotic-related proteins suggested involvement of apoptotic pathways. Down regulation of p21 and inverse changes in Bcl-2 and Bax were key findings. Conclusion: Treatment of VIN lesions using a novel bioadhesive patch induced changes in cell cycle and apoptotic proteins in response to PDT with possible utilisation of apoptotic pathways. The efficacy of PDT in treating VIN could be improved by a better understanding of these apoptotic mechanisms, the influence of factors, such as HPV status, and of the need for effective pain management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose. Aminolevulinic acid (5-ALA) diffusion through both keratinised and non-keratinised tissue, used as a model tissue substrates, was evaluated, together with the depth of permeation and the concentration achieved following delivery from bioadhesive patch and proprietary cream formulations. Materials and Methods. Moisture-activated, bioadhesive patches loaded with 5-ALA at concentrations of 19.0, 38.0 and 50.0 mg cm(-2) and an o/w cream (20% w/w 5-ALA) were radiolabelled with C14 5-ALA and applied to excised human vaginal tissue and porcine skin. After 1, 2 and 4 h, tissue was sectioned in two orientations and the 5-ALA concentration at specific depths determined using autoradiography and liquid scintillation counting (LSC). Results. The stratum corneum was a significant barrier to 5-ALA permeation, with concentrations in tissue dependent on application time and drug loading. 5-ALA was detected at 6 mm using autoradiography after 2 h, with LSC showing phototoxic concentrations at 2.375 mm after 4 h of application. Inclusion of oleic acid and dimethyl sulphoxide in bioadhesive patches increased 5-ALA significantly in neonate porcine tissue, but only for patches cast from blends containing 5% w/w oleic acid. Conclusions. The bioadhesive patch described delivered 5-ALA to depths of at least 2.5 mm in tissue types indicative of vulval skin, suggesting that photodynamic therapy of deep vulval intraepithelial neoplasia is feasible using this means of bioadhesive 5-ALA delivery.