2 resultados para 3D Computer Graphics
Resumo:
The paper describes the design and implementation of a novel low cost virtual rugby decision making interactive for use in a visitor centre. Original laboratory-based experimental work in decision making in rugby, using a virtual reality headset [1] is adapted for use in a public visitor centre, with consideration given to usability, costs, practicality and health and safety. Movement of professional rugby players was captured and animated within a virtually recreated stadium. Users then interact with these virtual representations via use of a lowcost sensor (Microsoft Kinect) to attempt to block them. Retaining the principles of perception and action, egocentric viewpoint, immersion, sense of presence, representative design and game design the system delivers an engaging and effective interactive to illustrate the underlying scientific principles of deceptive movement. User testing highlighted the need for usability, system robustness, fair and accurate scoring, appropriate level of difficulty and enjoyment.
Resumo:
We address the problem of 3D-assisted 2D face recognition in scenarios when the input image is subject to degradations or exhibits intra-personal variations not captured by the 3D model. The proposed solution involves a novel approach to learn a subspace spanned by perturbations caused by the missing modes of variation and image degradations, using 3D face data reconstructed from 2D images rather than 3D capture. This is accomplished by modelling the difference in the texture map of the 3D aligned input and reference images. A training set of these texture maps then defines a perturbation space which can be represented using PCA bases. Assuming that the image perturbation subspace is orthogonal to the 3D face model space, then these additive components can be recovered from an unseen input image, resulting in an improved fit of the 3D face model. The linearity of the model leads to efficient fitting. Experiments show that our method achieves very competitive face recognition performance on Multi-PIE and AR databases. We also present baseline face recognition results on a new data set exhibiting combined pose and illumination variations as well as occlusion.