36 resultados para 3638-1029


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the sensitivity of low-frequency electrical measurements to microbe-induced metal sulfide precipitation. Three identical sand-packed monitoring columns were used; a geochemical column, an electrical column and a control column. In the first experiment, continuous upward flow of nutrients and metals in solution was established in each column. Cells of Desulfovibrio vulgaris (D. vulgaris) were injected into the center of the geochemical and electrical columns. Geochemical sampling and post-experiment destructive analysis showed that microbial induced sulfate reduction led to metal precipitation on bacteria cells, forming motile biominerals. Precipitation initially occurred in the injection zone, followed by chemotactic migration of D. vulgaris and ultimate accumulation around the nutrient source at the column base. Results from this experiment conducted with metals show (1) polarization anomalies, up to 14 mrad, develop at the bacteria injection and final accumulation areas, (2) the onset of polarization increase occurs concurrently with the onset of lactate consumption, (3) polarization profiles are similar to calculated profiles of the rate of lactate consumption, and (4) temporal changes in polarization and conduction correlate with a geometrical rearrangement of metal-coated bacterial cells. In a second experiment, the same biogeochemical conditions were established except that no metals were added to the flow solution. Polarization anomalies were absent when the experiment was replicated without metals in solution. We therefore attribute the polarization increase observed in the first experiment to a metal-fluid interfacial mechanism that develops as metal sulfides precipitate onto microbial cells and form biominerals. Temporal changes in polarization and conductivity reflect changes in (1) the amount of metal-fluid interfacial area, and (2) the amount of electronic conduction resulting from microbial growth, chemotactic movement and final coagulation. This polarization is correlated with the rate of microbial activity inferred from the lactate concentration gradient, probably via a common total metal surface area effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We performed electrical measurements on sands flushed with bacterial suspensions of varying concentration. The first experiment was conducted with Shewanella putrefaciens (biomass 0â??0.5 mg/L) and the second with Escherichia coli (biomass 0â??42 mg/L). We measured a biomass-dependent low-frequency (10 Hz) polarization. At cell density 12 mg/L polarization increased (up to 15%). We attribute the decrease in polarization at low cell density to alteration of the mineral-fluid interface due to mineral-cell interactions. The polarization enhancement at higher cell density is possibly a pore throat mechanism resulting from decreased ionic mobility and/or electron transfer due to cell accumulation in pores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace IntCal98, which extended from 0-24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0-26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than IntCal98. Dendrochronologically-dated tree-ring samples cover the period from 0-12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4-26.0 cal kyr BP. A substantial enhancement relative to IntCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the (super 14) C age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agricultural soils are the dominant contributor to increases in atmospheric nitrous oxide (N2O). Few studies have investigated the natural N and O isotopic composition of soil N2O. We collected soil gas samples using horizontal sampling tubes installed at successive depths under five contrasting agricultural crops (e.g., unamended alfalfa, fertilized cereal), and tropospheric air samples. Mean d 15N and d 18O values of soil N2O ranged from -28.0 to +8.9‰, and from +29.0 to +53.6‰. The mean d 15N and d 18O values of tropospheric N2O were +4.6 ± 0.7‰ and +48.3 ± 0.2‰, respectively. In general, d values were lowest at depth, they were negatively correlated to soil [N2O], and d 15N was positively correlated to d 18O for every treatment on all sampling dates. N2O from the different agricultural treatments had distinct d 15N and d 18O values that varied among sampling dates. Fertilized treatments had soil N2O with low d values, but the unamended alfalfa yielded N2O with the lowest d values. Diffusion was not the predominant process controlling N2O concentration profiles. Based on isotopic and concentration data, it appears that soil N2O was consumed, as it moved from deeper to shallower soil layers. To better assess the main process(es) controlling N2O within a soil profile, we propose a conceptual model that integrates data on net N2O production or consumption and isotopic data. The direct local impact of agricultural N2O on the isotopic composition of tropospheric N2O was recorded by a shift toward lower d values of locally measured tropospheric N2O on a day with very high soil N2O emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown, for a bounded weighted bilateral shift T acting on l(p)(Z), and for 1

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of the fuel oxygenate methyl tert-butyl ether (MTBE) in the environment has received considerable scientific attention. The pollutant is frequently found in the groundwater due to leaking of underground storage tanks or pipelines. Concentrations of more than several mg/L MTBE were detected in groundwater at several places in the US and Germany in the last few years. In situ chemical oxidation is a promising treatment method for MTBE-contaminated plumes. This research investigated the reaction kinetics for the oxidation of MTBE by permanganate. Batch tests demonstrated that the oxidation of MTBE by permanganate is second order overall and first order individually with respect to permanganate and MTBE. The second-order rate constant was 1.426 x 10(-6) L/mg/h. The influence of pH on the reaction rate was demonstrated to have no significant effect. However, the rate of MTBE oxidation by potassium permanganate is 2-3 orders of magnitude lower than of other advanced oxidation processes. The slower rates of MTBE oxidation by permanganate limit the applicability of this process for rapid MTBE cleanup strategies. However, permanganate oxidation of MTBE has potential for passive oxidation risk management strategies. (C) 2002 Elsevier Science Ltd. All rights reserved.