110 resultados para 335-U1256D


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analysis of hard X-ray features in the spectrum of the bright Sy 1 galaxy Mrk 335 observed by the XMM-Newton satellite. Our analysis confirms the presence of a broad, ionized Fe Ka emission line in the spectrum, first found by Gondoin et al. The broad line can be modelled successfully by relativistic accretion disc reflection models. This interpretation is unusually robust in the case of Mrk 335 because of the lack of any ionized ('warm') absorber and the absence a clear narrow core to the line. Partial covering by neutral gas cannot, however, be ruled out statistically as the origin of the broad residuals. Regardless of the underlying continuum we report, for the first time in this source, the detection of a narrow absorption feature at the rest frame energy of ~5.9 keV. If the feature is identified with a resonance absorption line of iron in a highly ionized medium, the redshift of the line corresponds to an inflow velocity of ~0.11-0.15c. We present a simple model for the inflow, accounting approximately for relativistic and radiation pressure effects, and use Monte Carlo methods to compute synthetic spectra for qualitative comparison with the data. This modelling shows that the absorption feature can plausibly be reproduced by infalling gas providing that the feature is identified with Fe xxvi. We require the inflowing gas to extend over a limited range of radii at a few tens of r to match the observed feature. The mass accretion rate in the flow corresponds to 60 per cent of the Eddington limit, in remarkable agreement with the observed rate. The narrowness of the absorption line tends to argue against a purely gravitational origin for the redshift of the line, but given the current data quality we stress that such an interpretation cannot be ruled out. © 2006 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a 133-ks XMM-Newton observation of the Seyfert 1 galaxy Markarian 335. The 0.4-12 keV spectrum contains an underlying power-law continuum, a soft excess below 2 keV, and a double-peaked iron emission feature in the 6-7 keV range. We investigate the possibility that the double-peaked emission might represent the characteristic signature of the accretion disc. Detailed investigations show that a moderately broad accretion disc line is most likely present, but that the peaks may be due to narrower components from more distant material. The peaks at 6.4 and 7 keV can be identified, respectively, with the molecular torus in active galactic nucleus unification schemes, and very highly ionized, optically thin gas filling the torus. The X-ray variability spectra on both long (~100 ks) and short (~1 ks) time-scales do not support the recent suggestion that the soft excess is an artefact of variable, moderately ionized absorption. © 2007 The Authors. Journal compilation © 2007 RAS.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure and properties of a newly emerged solar active region (NOAA Active Region 7985) are discussed using the Coronal Diagnostic Spectrometer (CDS) and the Extreme- Ultraviolet Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory. CDS obtained high-resolution EUV spectra in the 308-381 Angstrom and 513-633 Angstrom wavelength ranges, while EIT recorded full-disk EUV images in the He II (304 Angstrom), Fe IX/X (171 Angstrom), Fe xii (195 Angstrom), and Fe XV (284 Angstrom) bandpasses. Electron density measurements from Si rx, Si X, Fe xii, Fe XIII, and Fe xiv line ratios indicate that the region consists of a central high- density core with peak densities of the order of 1.2 x 10(10) cm(-3), which decrease monotonically to similar to5.0 X 10(8) cm(-3) at the active region boundary. The derived electron densities also vary systematically with temperature. Electron pressures as a function of both active region position and temperature were estimated using the derived electron densities and ion formation temperatures, and the constant pressure assumption was found to be an unrealistic simplification. Indeed, the active region is found to have a high-pressure core (1.3 x 10(16) cm(-3) K) that falls to 6.0 x 10(14) cm(-3) K just outside the region. CDS line ratios from different ionization stages of iron, specifically Fe xvi (335.4 Angstrom) and Fe xiv (334.4 Angstrom), were used to diagnose plasma temperatures within the active region. Using this method, peak temperatures of 2.1 x 10(6) K were identified. This is in good agreement with electron temperatures derived using EIT filter ratios and the two-temperature model of Zhang et al. The high- temperature emission is confined to the active region core, while emission from cooler (1-1.6) x 10(6) K lines originates in a system of loops visible in EIT 171 and 195 X images. Finally, the three-dimensional geometry of the active region is investigated using potential field extrapolations from a Kitt Peak magnetogram. The combination of EUV and magnetic field extrapolations extends the "core-halo" picture of active region structure to one in which the core is composed of a number of compact coronal loops that confine the hot, dense, high- pressure core plasma while the halo emission emerges from a system of cooler and more extended loops.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-precision correlation of palaeoclimatic and palaeoenvironmental records is crucial for testing hypotheses of synchronous change. Although radiocarbon is the traditional method for dating late Quaternary sedimentary sequences, particularly during the last glacial–interglacial transition (LGIT; 15–9?ka), there are inherent problems with the method, particularly during periods of climate change which are often accompanied by major perturbations in atmospheric radiocarbon content. An alternative method is the use of tephras that act as time-parallel marker horizons. Within Europe, numerous volcanic centres are known to have erupted during the LGIT, providing considerable potential for high-precision correlation independent of past radiocarbon fluctuations. Here we report the first identification of the Vedde Ash and Askja Tephra in Ireland, significantly extending the known provenance of these events. We have also identified two new horizons (the Roddans Port Tephras A and B) and tentatively recognise an additional horizon from Vallensgård Mose (Denmark) that provide crucial additional chronological control for the LGIT. Two phases of the Laacher See Tephra (LST) are reported, the lower Laacher See Tephra (LLST) and probably the C2 phase of the Middle Laacher See Tephra (MLST-C2) indicating a more northeasterly distribution of this fan than reported previously.