7 resultados para 316420071016-moor
Resumo:
The efficacy of ‘sod removal’ as a fenland restoration technique was tested using an experimental approach at Montiaghs Moss Nature Reserve, Northern Ireland, from 2006 to 2008. The site suffered from rank growth of purple moor-grass Molinia caerulea which was out-competing herbaceous species. Soil was removed up to a depth of 15 cm completely denuding vegetation in the experimental plot exposing bare peat. By July 2007, 15.2% of sod-removal areas were revegetated; by October 2008 cover had risen to 64.6%. Of this cover, purple moor-grass accounted for only 9-11% compared to 78- 79% on control plots. Cover of other rank-forming grass species was also significantly reduced. Sod removal significantly increased the cover of species characteristic of fenlands including sedges Carex spp., rushes Juncus spp., marsh pennywort Hydrocotyle vulgaris and lesser spearwort Ranunculus flammula. It seems likely that sod removal, which lowered the surface of the peat, restored minerotrophic conditions and exposed the historical seed bank stimulating regeneration of some fenland specialists and pioneer species; this resulted in significantly higher species richness on sod removal plots than control plots two years after treatment. There was no demonstrable effect of sod removal on abundance of devil’s-bit scabious Succisa pratensis, the larval food plant of the Annex II listed marsh fritillary butterfly Euphydryas aurinia. We recommend that consideration should be given to artificially seeding devil’s-bit scabious soon after sod removal treatment to promote early recolonisation and to increase plant abundance on the site.
Resumo:
The selective hydrogenation of ,-unsaturated aldehydes and ketones has been studied using ketoisophorone and cinnamaldehyde as model substrates using manganese oxide octahedral molecular sieve (OMS-2) based catalysts. For the first time, OMS-2 has been shown to be an efficient and selective hydrogenation catalyst. High selectivities for either the CC or CO double bond at approximate to 100% conversion were achieved by using OMS-2 and platinum supported on OMS-2 catalysts. Density functional theory (DFT) calculations showed that the dissociation of H2 on OMS-2 was water assisted and occurred on the surface Mn of OMS-2(001) that had been modified by an adsorbed H2O molecule. The theoretically calculated activation barrier was in good agreement with the experimentally determined value for the hydrogenation reactions, indicating that H2 dissociation on OMS-2 is likely to be the rate-determining step. A significant increase in the rate of reaction was observed in the presence of Pt as a result of the enhancement of H2 dissociative adsorption and subsequent reaction on the Pt or spillover of the hydrogen to the OMS-2 support. The relative adsorption strengths of ketoisophorone and cinnamaldehyde on the OMS-2 support compared with the Pt were found to determine the product selectivity.
Resumo:
This article deals with one of the most common elements in names of Irish hills and mountains. The grammar, phonology, etymology, semantic range and chronology of the element are examined. Sliabh is particularly complex in terms of its semantic range, which includes the following senses: 1) a mountain or hill (standing alone or forming part of a range); 2) a range of hills or mountains; 3) an moor or area of upland. The word is present in the earliest attested stages of the Irish language, and there is some evidence for all three meanings in Old Irish, though senses 1 and 2 are best attested. It is suggested that the view advanced by MacBain and Thurneysen that sliabh is etymologically related to Eng. slope and that this reflects its original meaning is open to some doubt in view of the lack of evidence for this sense in early Irish and the lack of clear cognates in other branches of Celtic and Indo-European languages.
Resumo:
Thousands of Neolithic and Bronze Age open-air rock art panels exist across the countryside in northern England. However, desecration, pollution, and other factors are threatening the survival of these iconic stone monuments. Evidence suggest that rates of panel deterioration may be increasing, although it is not clear whether this is due to local factors or wider environmental influences accelerated by environmental change. To examine this question, 18 rock art panels with varied art motifs were studied at two major panel locations at Lordenshaw and Weetwood Moor in Northumberland. A condition assessment
tool was used to first quantify the level of deterioration of each panel (called “staging”). Stage estimates then were compared statistically with 27 geochemical and physical descriptors of local environments, such as soil moisture, salinity, pH, lichen coverage, soil anions and cation levels, and panel orientation, slope, and standing height. In parallel, climate modelling was performed using UKCP09 to assess how projected climatic conditions (to 2099) might affect the environmental descriptors most correlated with elevated stone deterioration. Only two descriptors significantly correlated (P < 0.05) with increased stage: the standing height of the panel and the exchangeable cation content of the local soils, although moisture conditions also were potentially influential at some panels. Climate modelling predicts warming temperatures, more seasonally variable precipitation, and increased wind speeds, which hint stone deterioration could accelerate in the future due to increased physiochemical weathering. We recommend key panels be targeted for immediate management intervention, focusing on reducing wind exposures, improving site drainage, and potentially immobilizing soil salts.
Resumo:
Tin, as a constituent of bronze, was central to the technological development of early societies, but cassiterite (SnO2) deposits were scarce and located distantly from the centres of Mediterranean civilizations. As Britain had the largest workable ore deposits in the ancient Western world, this has led to much historical speculation and myth regarding the long-distance trading of tin from the Bronze Age onwards. Here we establish the first detailed chronology for tin, along with lead and copper deposition, into undisturbed ombrotrophic (rain-fed) peat bogs located at Bodmin Moor and Dartmoor in the centre of the British tin ore fields. Sustained elevated tin deposition is demonstrated clearly, with peaks occurring at 100-400 and 700-1000 calendar years AD - contemporaneous with the Roman and Anglo-Saxon periods respectively. While pre-Roman Iron Age tin exploitation undoubtedly took place, it was on a scale that did not result in convincingly enhanced deposition of the metal. The deposition of lead in the peat record provides evidence of a pre-Roman metal-based economy in southwest Britain. Emerging in the 4th century BC, this was centred on copper and lead ore processing that expanded exponentially and then collapsed upon Roman colonization during the 1st century AD. (C) 2011 Elsevier Ltd. All rights reserved.