22 resultados para 3 METABOLITES
Resumo:
Glucose-dependent insulinotrophic polypepticle (GIP) and glucagon-like peptide-1 (GLP-1) are important enteroendocrine hormones that are rapidly degraded by an ubiquitous enzyme dipeptidyl peptidase IV to yield truncated metabolites GIP(3-42) and GLP-1 (9-36)amide. In this study, we investigated the effects of sub-chronic exposure to these major circulating forms of GIP and GLP-1 on blood glucose control and endocrine pancreatic function in obese diabetic (ob/ob) mice. A once daily injection of either peptide for 14 days had no effect on body weight, food intake or pancreatic insulin content or islet morphology. GLP-1(9-36)amide also had no effect on plasma glucose homeostasis or insulin secretion. Mice receiving GIP(3-42) exhibited small but significant improvements in non-fasting plasma glucose, glucose tolerance and glycaemic response to feeding. Accordingly, plasma insulin responses were unchanged suggesting that the observed enhancement of insulin sensitivity was responsible for the improvement in glycaemic control. These data indicate that sub-chronic exposure to GIP and GLP-1 metabolites does not result in physiological impairment of insulin secretion or blood glucose control. GIP(3-42) might exert an overall beneficial effect by improving insulin sensitivity through extrapancreatic action.
Resumo:
Efficient control of the illegal use of anabolic steroids must both take into account metabolic patterns and associated kinetics of elimination; in this context, an extensive animal experiment involving 24 calves and consisting of three administrations of 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate esters was carried out over 50 days. Urine samples were regularly collected during the experiment from all treated and non-treated calves. For sample preparation, a single step high throughput protocol based on 96-well C-18 SPE was developed and validated according to the European Decision 2002/657/EC requirements. Decision limits (CC alpha) for steroids were below 0.1 mu g L-1, except for 19-norandrosterone (CC alpha = 0.7 mu g L-1) and estrone (CC alpha = 0.3 mu g L-1). Kinetics of elimination of the administered 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate were established by monitoring 17 beta-estradiol, 17 alpha-estradiol, estrone and 17 beta-nandrolone, 17 alpha-nandrolone, 19-noretiocholanolone, 19-norandrostenedione, respectively. All animals demonstrated homogeneous patterns of elimination both from a qualitative (metabolite profile) and quantitative point of view (elimination kinetics in urine). Most abundant metabolites were 17 alpha-estradiol and 17 alpha-nandrolone (> 20 and 2 mg L-1, respectively after 17 beta-estradiol 3-benzoate and 17 beta-nandrolone laureate administration) whereas 17 beta-estradiol, estrone, 17 beta-nandrolone, 19-noretiocholanolone and 19-norandrostenedione were found as secondary metabolites at concentration values up to the mu g L-1 level. No significant difference was observed between male and female animals. The effect of several consecutive injections on elimination profiles was studied and revealed a tendency toward a decrease in the biotransformation of administered steroid 17 beta form. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Using toluene dioxygenase as biocatalyst, enantiopure cisdihydrodiol and cis-tetrahydrodiol metabolites, isolated as their ketone tautomers, were obtained from meta and ortho methoxyphenols. Although these isomeric phenol substrates are structurally similar, the major bioproducts from each of these biotransformations were found at different oxidation levels. The relatively stable cyclohexenone cis-diol metabolite from meta methoxyphenol was isolated, while the corresponding metabolite from ortho methoxyphenol was rapidly bioreduced to a cyclohexanone cis-diol. The chemistry of the 3-methoxycyclohexenone cis-diol product was investigated and elimination, aromatization, hydrogenation, regioselective O-exchange, Stork−Danheiser transposition and O-methylation reactions were observed. An offshoot of this technology provided a two-step chemoenzymatic synthesis, from meta methoxyphenol, of a recently reported chiral fungal metabolite; this synthesis also established the previously unassigned absolute configuration.
Resumo:
A chiral gas chromatographic assay has been developed for quantitative analysis of ethosuximide and its major metabolites in rat urine. The extraction procedure was found to be precise and reproducible. Recovery was in the range of 94-98%, intraday CV(%) was 0.92% for (S)-ethosuximide (50 mug/ml) and 0.51% for (R)-ethosuximide (50 mug/ml). Interday CV(%) was 1.12% for (S)-ethosuximide and 0.72% for (R)-ethosuximide. The limit of detection was determined to be around 0.01 mug/ml for each enantiomer. Following administration of rac-ethosuximide by i.v., i.p. and oral routes, unchanged ethosuximide was detected in urine up to 72h after drug administration. The appearance of all detected metabolites occurred Within 24h of drug administration. Significantly more (S)-ethosuximide was excreted unchanged than (R)-ethosuximide with all three routes studied. A substantial amount of the drug was eliminated as the 2-(1-hydroxyethyl)-2-methylsuccinimide (2 pairs of diastereoisomers). Much less drug was eliminated as the 2-ethyl-3-hydroxy-2-methylsuccinimide with only one diastereoisomer observed. Examination of the one pair of diastereoisomers of 2-(1-hydroxyethyl)-2-methylsuccinimide that was resolved showed preferential excretion of one isomer. Comparison of both pairs of diastereoisomers showed that one pair was formed in preference to the other with a ratio of approximately 0.8:1. It is concluded that stereoselective metabolism of ethosuximide occurs. Copyright (C) 2001 John Wiley & Sons, Ltd. Author Keywords: chiral pharmacokinetics; ethosuximide enantiomers; metabolism; rat; urinary excretion; gas chromatography
Resumo:
A series of cis-dihydrodiol metabolites, available from the bacterial dioxygenase-catalysed oxidation of monosubstituted benzene substrates using Pseudomonas putida UV4, have been converted to the corresponding catechols using both a heterogeneous catalyst (Pd/C) and a naphthalene cis-diol dehydrogenase enzyme present in whole cells of the recombinant strain Escherichia coli DH5 alpha(pUC129: nar B). A comparative study of the merits of both routes to 3-substituted catechols has been carried out and the two methods have been found to be complementary. A similarity in mechanism for catechol formation under both enzymatic and chemoenzymatic conditions, involving regioselective oxidation of the hydroxyl group at C-1, has been found using deuterium labelled toluene cis-dihydrodiols. The potential, of combining a biocatalytic step (dioxygenase-catalysed cis-dihydroxylation) with a chemocatalytic step (Pd/C-catalysed dehydrogenation), into a one-pot route to catechols, from the parent substituted benzene substrates, has been realised.
Resumo:
NMR studies were conducted with the aim of determining the diastereoisomeric ratio of a commercially supplied sample of mesoridazine (MES) and to compare the results with a freshly synthesised sample of MES. The results indicated that the commercially supplied MES consisted almost entirely of one diastereoisomeric pair, which was in agreement with previous findings reported by Eap et al. (J Chromatogr 669:271-279, 1995). The synthesised sample of MES was analysed by NMR in two stages: 1) as the initial product isolated as the free base from the direct synthesis, and 2) as the free base isolated from the crystallised besylate salt of the synthetic product. The NMR results show that the initial synthetic product consisted of two equal pairs of diastereoisomers. The diastereoisomeric pairs were further separated by the addition of the chiral shift reagent (R)-(-)-N-(3,5 dinitrobenzoyl)-alpha-benzylamine to reveal equal quantities of all four enantiomers, clearly observed at the methyl sulfoxide proton peak of the NMR scan. The sample obtained from the crystallisation of MES besylate, however, indicated a significant difference, with a diastereoisomeric ratio of 75:25. The results suggest that MES besylate undergoes preferential crystallisation of one pair of diastereoisomers, with the other pair remaining in solution. (C) 2004 Wiley-Liss, Inc.
Resumo:
cis-Dihydrodiol, cis-tetrahydrodiol and arene hydrate bacterial metabolites, of naphthalene and 1,2-dihydronaphthalene, have been used as synthetic precursors; chemoenzymatic and enzyme-catalysed syntheses have been used to obtain all possible enantiopure samples of dihydroxy-1,2,3,4-tetrahydronaphthalene stereoisomers.
Resumo:
cis-2,3-Dihydrodiol metabolites of monosubstituted halobenzenes and toluene have been used as synthetic precursors of the corresponding 3,4-cis-dihydrodiols. Enantiopure syn-benzene dioxide intermediates were reduced to the 3,4-cis-dihydrodiols and thermally racemised via the corresponding 1,4-dioxocins. The syn-benzene dioxide-1,4-dioxocin valence tautomeric equilibrium ratio was found to be dependent on the substituent position. The methodology has also been applied to the synthesis of both enantiomers of the 1,2-(ipso)- and 3,4-cis-dihydrodiols of toluene. This chemoenzymatic approach thus makes available, for the first time, all three possible cis-dihydrodiol regioisomers of a monosubstituted benzene.
Resumo:
Absolute configurations of a number of cis-dihydrodiols (cis-1,2-dihydroxy-3,5-cyclohexadienes), synthetically useful products of TDO-catalyzed dihydroxylations of 1,2- and 1,3-disubstituted benzene derivatives, have been determined by a comparison of calculated and experimental CD spectra and optical rotations and by methods involving X-ray crystallography, H-1 NMR spectra of diastereoisomeric derivatives, and by stereochemical correlations. The computations disclosed a significant effect of the substituents on conformational equilibria of cis-dihydrodiols and chiroptical properties of individual conformers. The assigned absolute configurations of cis-dihydrodiols have allowed the validity of a simple predictive model for TDO-catalyzed arene dihydroxylations to be extended.
Resumo:
We have determined the absolute configurations of conformationally flexible cis-dihydrodiol metabolites (cis-1,2-dihydroxy-3,5-cyclohexadienes), bearing different substituents (e.g., Br, F, CF3, CN, Me) in 3- and 5-positions, by the method of confrontation of experimental and calculated electronic CD spectra and optical rotations. Convergent results were obtained by both methods in eight out of ten cases. For the difficult cases, where either conformer population and/or chiroptical properties (calculated rotational strengths of the long-wavelength Cotton effect or optical rotations) of contributing conformers remain inconclusive, the absolute configuration could still be correctly assigned based on one of the biased properties (either ECD or optical rotation). This approach appears well-suited for a broad spectrum of conformationally flexible chiral molecules.
Resumo:
An HPLC method has been developed and validated for the rapid determination of mercaptopurine and four of its metabolites; thioguanine, thiouric acid, thioxanthine and methylmercaptopurine in plasma and red blood cells. The method involves a simple treatment procedure based on deproteinisation by perchloric acid followed by acid hydrolysis and heating for 45 min at 100 degrees C. The developed method was linear over the concentration range studied with a correlation coefficient >0.994 for all compounds in both plasma and erythrocytes. The lower limits of quantification were 13, 14, 3, 2, 95 pmol/8 x 101 RBCs and 2, 5, 2, 3, 20 ng/ml plasma for thioguanine, thiouric acid, mercaptopurine, thioxanthine and methylmercaptopurine, respectively. The method described is selective and sensitive enough to analyse the different metabolites in a single run under isocratic conditions. Furthermore, it has been shown to be applicable for monitoring these metabolites in paediatric patients due to the low volume requirement (200 mu l of plasma or erythrocytes) and has been successfully applied for investigating population pharmacokinetics, pharmacogenetics and non-adherence to therapy in these patients. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Malachite Green (MG), Crystal Violet (CV) and Brilliant Green (BC) are antibacterial, antifungal and antiparasitic agents that have been used for treatment and prevention of diseases in fish. These dyes are metabolized into reduced leuco forms (LMG, LCV, LBG) that can be present in fish muscles for a long period. Due to the carcinogenic properties they are banned for use in fish for human consumption in many countries including the European Union and the United States. HPLC and LC-MS techniques are generally used for the detection of these compounds and their metabolites in fish. This study presents the development of a fast enzyme-linked immunosorbent assay (ELISA) method as an alternative for screening purposes. A first monoclonal cell line producing antibodies to MG was generated using a hybridoma technique. The antibody had good cross-reactivates with related chromatic forms of triphenylmethane dyes such as CV, BC, Methyl Green, Methyl Violet and Victoria Blue R. The monoclonal antibody (mAb) was used to develop a fast (20 min) disequilibrium ELISA screening method for the detection of triphenylmethanes in fish. By introducing an oxidation step with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) during sample extraction the assay was also used to detect the presence of the reduced metabolites of triphenylmethanes. The detection capability of the assay was 1 ng g(-1) for MG, LMG, CV, LCV and BC which was below the minimum required performance limit (MRPL) for the detection method of total MG (sum of MG and LMG) set by the Commission Decision 2004/25/EC (2 ng g(-1)). The mean recoveries for fish samples spiked at 0.5 MRPL and MRPL levels with MG and LMG were between 74.9 and 117.0% and inter- and intra-assay coefficients of variation between 4.7 and 25.7%. The validated method allows the analysis of a batch of 20 samples in two to three hours. Additionally, this procedure is substantially faster than other ELISA methods developed for MG/LMG thus far. The stable and efficient monoclonal cell line obtained is an unlimited source of sensitive and specific antibody to MG and other triphenylmethanes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The biphenyl dioxygenase-catalyzed asymmetric mono-cis-dihydroxylation of the tetracyclic arenes chrysene 1A, benzo[c]phenanthridine 1B, and benzo[b]naphtho[2,1-d]thiophene 1C, has been observed to occur exclusively at the bay or pseudo-bay region using the bacterium Sphingomonas yanoikuyae B8/36. The mono-cis-dihydrodiol derivatives 2A and 2C, obtained from chrysene 1A by oxidation at the 3,4-bond (2A) and benzo[b]naphtho[2,1-d]thiophene 1C by oxidation at the 1,2-bond (2C), respectively, have been observed to undergo a further dioxygenase-catalyzed asymmetric cis-dihydroxylation at a second bay or pseudo-bay region bond to yield the corresponding bis-cis-dihydrodiols (cis-tetraols) 4A and 4C, the first members of a new class of microbial metabolites in the polycyclic arene series. The enantiopurities and absolute configurations of the new mono-cis-dihydrodiols 2B, 2C, and 3B were determined by H-1 NMR analyses of the corresponding (R)- and (S)-2-(1-methoxyethyl)benzeneboronate (MPBA) ester derivatives. The structure and absolute configurations of the bis-cis-dihydrodiols 4A and 4C were unambiguously determined by spectral analyses, stereochemical correlations, and, for the metabolite 4C, X-ray crystallographic analysis of the bis-acetonide derivative 7C. These results illustrate the marked preference of biphenyl dioxygenase for the cis-di- and tetra-hydroxylations of polycyclic arenes, at the more hindered bay or pseudo-bay regions, by exclusive addition from the same (si:si) face, to yield single enantiomers containing two and four chiral centers.
Resumo:
Biotransformation of 3-substituted and 2,5-disubstituted phenols, using whole cells of P. putida UV4, yielded cyclohexenone cis-diols as single enantiomers; their structures and absolute configurations have been determined by NMR and ECD spectroscopy, X-ray crystallography, and stereochemical correlation involving a four step chemoenzymatic synthesis from the corresponding cis-dihydrodiol metabolites. An active site model has been proposed, to account for the formation of enantiopure cyclohexenone cis-diols with opposite absolute configurations.