4 resultados para 290601 Chemical Engineering Design
Resumo:
Many engineers currently in professional practice will have gained a degree level qualification which involved studying a curriculum heavy with mathematics and engineering science. While this knowledge is vital to the engineering design process so also is manufacturing knowledge, if the resulting designs are to be both technically and commercially viable.
The methodology advanced by the CDIO Initiative aims to improve engineering education by teaching in the context of Conceiving, Designing, Implementing and Operating products, processes or systems. A key element of this approach is the use of Design-Built-Test (DBT) projects as the core of an integrated curriculum. This approach facilitates the development of professional skills as well as the application of technical knowledge and skills developed in other parts of the degree programme. This approach also changes the role of lecturer to that of facilitator / coach in an active learning environment in which students gain concrete experiences that support their development.
The case study herein describes Mechanical Engineering undergraduate student involvement in the manufacture and assembly of concept and functional prototypes of a folding bicycle.
Resumo:
This paper details the results from a large European Union rotomoulding research project on the adaptation and development of industrial microwave oven technology to the rotational moulding process. Following computer modelling, an industrial scale microwave oven was specifically designed, manufactured and attached to the drop-arm of a convention rotational moulding machine where extensive moulding trials were carried out. The design and development of the microwave oven and test mould, together with the savings in terms of energy efficiency and mould heating rate that were achieved are discussed.
Resumo:
Permanent magnet synchronous motors (PMSMs) provide a competitive technology for EV traction drives owing to their high power density and high efficiency. In this paper, three types of interior PMSMs with different PM arrangements are modeled by the finite element method (FEM). For a given amount of permanent magnet materials, the V-shape interior PMSM is found better than the U-shape and the conventional rotor topologies for EV traction drives. Then the V-shape interior PMSM is further analyzed with the effects of stator slot opening and the permanent magnet pole chamfering on cogging torque and output torque performance. A vector-controlled flux-weakening method is developed and simulated in Matlab to expand the motor speed range for EV drive system. The results show good dynamic and steady-state performance with a capability of expanding speed up to four times of the rated. A prototype of the V-shape interior PMSM is also manufactured and tested to validate the numerical models built by the FEM.