32 resultados para 280213 Other Artificial Intelligence
Resumo:
Editorial for 17th AICS Conference
Resumo:
This study explores using artificial neural networks to predict the rheological and mechanical properties of underwater concrete (UWC) mixtures and to evaluate the sensitivity of such properties to variations in mixture ingredients. Artificial neural networks (ANN) mimic the structure and operation of biological neurons and have the unique ability of self-learning, mapping, and functional approximation. Details of the development of the proposed neural network model, its architecture, training, and validation are presented in this study. A database incorporating 175 UWC mixtures from nine different studies was developed to train and test the ANN model. The data are arranged in a patterned format. Each pattern contains an input vector that includes quantity values of the mixture variables influencing the behavior of UWC mixtures (that is, cement, silica fume, fly ash, slag, water, coarse and fine aggregates, and chemical admixtures) and a corresponding output vector that includes the rheological or mechanical property to be modeled. Results show that the ANN model thus developed is not only capable of accurately predicting the slump, slump-flow, washout resistance, and compressive strength of underwater concrete mixtures used in the training process, but it can also effectively predict the aforementioned properties for new mixtures designed within the practical range of the input parameters used in the training process with an absolute error of 4.6, 10.6, 10.6, and 4.4%, respectively.
Resumo:
In this paper, we propose an adaptive approach to merging possibilistic knowledge bases that deploys multiple operators instead of a single operator in the merging process. The merging approach consists of two steps: one is called the splitting step and the other is called the combination step. The splitting step splits each knowledge base into two subbases and then in the second step, different classes of subbases are combined using different operators. Our approach is applied to knowledge bases which are self-consistent and the result of merging is also a consistent knowledge base. Two operators are proposed based on two different splitting methods. Both operators result in a possibilistic knowledge base which contains more information than that obtained by the t-conorm (such as the maximum) based merging methods. In the flat case, one of the operators provides a good alternative to syntax-based merging operators in classical logic.
Resumo:
Support vector machine (SVM) is a powerful technique for data classification. Despite of its good theoretic foundations and high classification accuracy, normal SVM is not suitable for classification of large data sets, because the training complexity of SVM is highly dependent on the size of data set. This paper presents a novel SVM classification approach for large data sets by using minimum enclosing ball clustering. After the training data are partitioned by the proposed clustering method, the centers of the clusters are used for the first time SVM classification. Then we use the clusters whose centers are support vectors or those clusters which have different classes to perform the second time SVM classification. In this stage most data are removed. Several experimental results show that the approach proposed in this paper has good classification accuracy compared with classic SVM while the training is significantly faster than several other SVM classifiers.
Resumo:
The decision of the U.S. Supreme Court in 1991 in Feist Publications, Inc. v. Rural Tel. Service Co. affirmed originality as a constitutional requirement for copyright. Originality has a specific sense and is constituted by a minimal degree of creativity and independent creation. The not original is the more developed concept within the decision. It includes the absence of a minimal degree of creativity as a major constituent. Different levels of absence of creativity also are distinguished, from the extreme absence of creativity to insufficient creativity. There is a gestalt effect of analogy between the delineation of the not original and the concept of computability. More specific correlations can be found within the extreme absence of creativity. "[S]o mechanical" in the decision can be correlated with an automatic mechanical procedure and clauses with a historical resonance with understandings of computability as what would naturally be regarded as computable. The routine within the extreme absence of creativity can be regarded as the product of a computational process. The concern of this article is with rigorously establishing an understanding of the extreme absence of creativity, primarily through the correlations with aspects of computability. The understanding established is consistent with the other elements of the not original. It also revealed as testable under real-world conditions. The possibilities for understanding insufficient creativity, a minimal degree of creativity, and originality, from the understanding developed of the extreme absence of creativity, are indicated.
Resumo:
With the rapid growth in the quantity and complexity of scientific knowledge available for scientists, and allied professionals, the problems associated with harnessing this knowledge are well recognized. Some of these problems are a result of the uncertainties and inconsistencies that arise in this knowledge. Other problems arise from heterogeneous and informal formats for this knowledge. To address these problems, developments in the application of knowledge representation and reasoning technologies can allow scientific knowledge to be captured in logic-based formalisms. Using such formalisms, we can undertake reasoning with the uncertainty and inconsistency to allow automated techniques to be used for querying and combining of scientific knowledge. Furthermore, by harnessing background knowledge, the querying and combining tasks can be carried out more intelligently. In this paper, we review some of the significant proposals for formalisms for representing and reasoning with scientific knowledge.