5 resultados para 2395
Resumo:
PURPOSE:
Treatment options for older patients with acute myeloid leukemia (AML) who are not considered suitable for intensive chemotherapy are limited. We assessed the second-generation purine nucleoside analog, clofarabine, in two similar phase II studies in this group of patients.
PATIENTS AND METHODS:
Two consecutive studies, UWCM-001 and BIOV-121, recruited untreated older patients with AML to receive up to four or six 5-day courses of clofarabine. Patients in UWCM-001 were either older than 70 years or 60 to 69 years of age with poor performance status (WHO > 2) or with cardiac comorbidity. Patients in BIOV-121 were >or= 65 years of age and deemed unsuitable for intensive chemotherapy.
RESULTS:
A total of 106 patients were treated in the two monotherapy studies. Median age was 71 years (range, 60 to 84 years), 30% had adverse-risk cytogenetics, and 36% had a WHO performance score >or= 2. Forty-eight percent had a complete response (32% complete remission, 16% complete remission with incomplete peripheral blood count recovery), and 18% died within 30 days. Interestingly, response and overall survival were not inferior in the adverse cytogenetic risk group. The safety profile of clofarabine in these elderly patients with AML who were unsuitable for intensive chemotherapy was manageable and typical of a cytotoxic agent in patients with acute leukemia. Patients had similar prognostic characteristics to matched patients treated with low-dose cytarabine in the United Kingdom AML14 trial, but had significantly superior response and overall survival.
CONCLUSION:
Clofarabine is active and generally well tolerated in this patient group. It is worthy of further evaluation in comparative trials and might be of particular use in patients with adverse cytogenetics.
Resumo:
We genotyped 2,861 cases of primary biliary cirrhosis (PBC) from the UK PBC Consortium and 8,514 UK population controls across 196,524 variants within 186 known autoimmune risk loci. We identified 3 loci newly associated with PBC (at P <5 × 10(-8)), increasing the number of known susceptibility loci to 25. The most associated variant at 19p12 is a low-frequency nonsynonymous SNP in TYK2, further implicating JAK-STAT and cytokine signaling in disease pathogenesis. An additional five loci contained nonsynonymous variants in high linkage disequilibrium (LD; r(2) > 0.8) with the most associated variant at the locus. We found multiple independent common, low-frequency and rare variant association signals at five loci. Of the 26 independent non-human leukocyte antigen (HLA) signals tagged on the Immunochip, 15 have SNPs in B-lymphoblastoid open chromatin regions in high LD (r(2) > 0.8) with the most associated variant. This study shows how data from dense fine-mapping arrays coupled with functional genomic data can be used to identify candidate causal variants for functional follow-up.
Resumo:
Green tea, a popular polyphenol-containing beverage, has been shown to alleviate clinical features of the metabolic syndrome. However, its effects in endogenous antioxidant biomarkers are not clearly understood. Thus, we tested the hypothesis that green tea supplementation will upregulate antioxidant parameters (enzymatic and nonenzymatic) in adults with the metabolic syndrome. Thirty-five obese participants with the metabolic syndrome were randomly assigned to receive one of the following for 8 weeks: green tea (4 cups per day), control (4 cups water per day), or green tea extract (2 capsules and 4 cups water per day). Blood samples and dietary information were collected at baseline (0 week) and 8 weeks of the study. Circulating carotenoids (a-carotene, ß-carotene, lycopene) and tocopherols (a-tocopherol, ?-tocopherol) and trace elements were measured using high-performance liquid chromatography and inductively coupled plasma mass spectroscopy, respectively. Serum antioxidant enzymes (glutathione peroxidase, glutathione, catalase) and plasma antioxidant capacity were measured spectrophotometrically. Green tea beverage and green tea extract significantly increased plasma antioxidant capacity (1.5 to 2.3 µmol/L and 1.2 to 2.5 µmol/L, respectively; P <.05) and whole blood glutathione (1783 to 2395 µg/g hemoglobin and 1905 to 2751 µg/g hemoglobin, respectively; P <.05) vs controls at 8 weeks. No effects were noted in serum levels of carotenoids and tocopherols and glutathione peroxidase and catalase activities. Green tea extract significantly reduced plasma iron vs baseline (128 to 92 µg/dL, P <.02), whereas copper, zinc, and selenium were not affected. These results support the hypothesis that green tea may provide antioxidant protection in the metabolic syndrome.
Resumo:
Lycopene can exert antioxidant effects against peripheral and cellular oxidative stress and may be associated with reduced diabetic risk. Conversely, exercise-induced free radicals are thought to underpin many of the desirable whole-body adaptations following training and the use of antioxidants within the exercise model remains debatable. PURPOSE: To investigate the effect of lycopene supplementation on oxidative stress and glucose homeostasis following acute aerobic exercise. METHOD: Twenty-eight (n=28) apparently healthy male volunteers were recruited (age 24 ± 4 years; weight 78 ± 10 kg; height 178 ± 8 cm; 2max 40 ± 7 ml·kg-1 ·min-1 ) in a randomised, single blind, placebo-controlled study. Participants were required to attend the Laboratory on two occasions: prior to and following 6 weeks of supplementation of either 10mg lycopene (LG; n=15) or placebo (PG; n=13) followed by a bout of acute exercise for one hour at 65% 2max. Exogenous glucose oxidation was then measured on an isotope ratio mass spectrometer in a sub-group of participants (n=14) following exercise, by administration of a standard oral glucose tolerance test (OGTT; 75g glucose). Venous blood samples were drawn for measurement of oxidative stress parameters, plasma glucose and insulin. RESULTS: Plasma lycopene increased in LG only (0.01 ± 0.004 vs.0.02 ± 0.007 µmol/L; P <0.05) following supplementation and remained elevated post exercise compared to PG (0.01 ± 0.004 vs. 0.02 ± 0.009 µmol/L; P <0.05). There were no changes in other markers of oxidative stress (SOD, LOOHs, F2 ISP and Alkoxyl radical) either between or within the trials, (P >0.05, respectively). A main effect for an increase in insulin was observed two hours post OGTT in the sub-groups (Pooled data, P <0.05) but trends in the HOMA scores were evident with a 57% increase for LG (2.20 ± 1.84 vs. 5.14 ± 2.5; P >0.05) and an 11% decrease for PG (2.17 ± 1.06 vs. 1.94 ± 1.53; P >0.05). No change in plasma glucose was detected at any point, or after the OGTT (P >0.05). CONCLUSION: In healthy males, lycopene supplementation had no effect on post exercise levels of ROS or markers of lipid peroxidation, despite an increase in plasma lycopene. However, lycopene supplementation may affect post exercise insulin sensitivity in response to glucose consumption, but further parallel research is required.