14 resultados para 2.1 GA
Resumo:
La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), a promising electrolyte material for intermediate temperature solid oxide fuel cells, can be sintered to a fully dense state by a flash-sintering technique. In this work, LSGM is sintered by the current-limiting flash-sintering process at 690°C under an electric field of 100 V cm-1, in comparison with up to 1400°C or even higher temperature in conventional furnace sintering. The resultant LSGM samples are investigated by scanning electron microscopy, X-ray diffraction, and electrochemical impedance spectroscopy. The SEM images exhibit well-densified microstructures while XRD results show that the perovskite structure after flash-sintering does not changed. EIS results show that the conductivity of LSGM sintered by the current-limiting flash-sintering process increases with sintering current density value. The conductivity of samples sintered at 120 mA mm-2 reaches 0.049 σ cm-1 at 800°C, which is approximate to the value of conventional sintered LSGM samples at 1400°C. Additionally, the flash-sintering process is interpreted by Joule heating theory. Therefore, the current-limiting flash-sintering technique is proved to be an energy-efficient and eligible approach for the densification of LSGM and other materials requiring high sintering temperature.
[2,1-c][1,4]benzodiazepine (PBD)-distamycin hybrid inhibits DNA binding to transcription factor Sp1.
Resumo:
Five new compounds in the system (NH4)Cl/HgCl2/H2O have been obtained as colourless single crystals, (NH4)Hg5Cl11, (NH4)(2)Hg3Cl8(H2O), (NH4)(4)Hg3Cl10(H2O)(2), (NH4)(2)HgCl4(H2O), and (NH4)(10)Hg3Cl16. In all of these, as in HgCl2 itself, (almost) linear HgCl2 molecules persist with Hg-Cl distances varying from 229 to 236 pm. In (NH4)(10)Hg3Cl16 there are also tetrahedra [HgCl4] with d(Hg-Cl) = 247 pm present. If larger Hg-Cl distances (of up to 340 pm) are considered as belonging to the coordination sphere of Hg-II, the structures may be described as consisting of isolated octahedra and tetrahedra as in (NH4)(10)Hg3Cl16, edge-connected chains as in (NH4)(2)HgCl4(H2O), edge-connected chains and layers of octahedra as in (NH4)(4)Hg3Cl10(H2O)(2), corrugated layers of edge-connected octahedra as in (NH4)(2)Hg3Cl8(H2O), and, finally, a three-dimensional network of connected six- and seven-coordinate Hg-Cl polyhedra as in (NH4)Hg5Cl11. The water molecules are never attached to Hg-II. The (NH4)(+) cations, and sometimes Cl- anions, play a role for electroneutrality only.
Resumo:
Two semianalytical relations [Nature, 1996, 381, 137 and Phys. Rev. Lett. 2001, 87, 245901] predicting dynamical coefficients of simple liquids on the basis of structural properties have been tested by extensive molecular dynamics simulations for an idealized 2:1 model molten salt. In agreement with previous simulation studies, our results support the validity of the relation expressing the self-diffusion coefficient as a Function of the radial distribution functions for all thermodynamic conditions such that the system is in the ionic (ie., fully dissociated) liquid state. Deviations are apparent for high-density samples in the amorphous state and in the low-density, low-temperature range, when ions condense into AB(2) molecules. A similar relation predicting the ionic conductivity is only partially validated by our data. The simulation results, covering 210 distinct thermodynamic states, represent an extended database to tune and validate semianalytical theories of dynamical properties and provide a baseline for the interpretation of properties of more complex systems such as the room-temperature ionic liquids.
Resumo:
Almost alternating copolymers of bicyclo[2.2.1]hept-2-ene and cyclopentene have been formed by ring-opening metathesis polymerization using a RuCl3-phenol catalyst system; this highly novel result is attributed to differential steric influences exerted by a hydrogen-bonded solvent cage which encloses the catalyst site.
Resumo:
Lasing properties of a collisional-excitation Ne-like Ge soft-x-ray laser have been studied with exploding-foil, single-slab, and double-slab targets under identical pumping conditions. Experimental results for the angular intensity distributions and the temporal variations of the lasing intensities are examined with a hydrodynamic code and ray-trace calculations. The observed angular distribution are well reproduced by these analyses, and it is found that the effective gain regions are located on the high-density side of the expected gain regions. It is shown that the observed lasing intensity of the J = 0 to J = 1 line is strongly correlated with the temporal change of the calculated electron temperature for both the slab and the exploding-foil targets.
Resumo:
Overexpression of the Bcl-2 proto-oncogene in tumor cells confers resistance against chemotherapeutic drugs. In this study, we describe how the novel pyrrolo-1,5-benzoxazepine compound 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) selectively induces apoptosis in Bcl-2-overexpressing cancer cells, whereas it shows no cytotoxic effect on normal peripheral blood mononuclear cells. PBOX-6 overcomes Bcl-2-mediated resistance to apoptosis in chronic myelogenous leukemia (CML) K562 cells by the time- and dose-dependent phosphorylation and inactivation of antiapoptotic Bcl-2 family members Bcl-2 and Bcl-XL. PBOX-6 also induces Bcl-2 phosphorylation and apoptosis in wild-type T leukemia CEM cells and cells overexpressing Bcl-2. This is in contrast to chemotherapeutic agents such as etoposide, actinomycin D, and ultraviolet irradiation, whereby overexpression of Bcl-2 confers resistance against apoptosis. In addition, PBOX-6 induces Bcl-2 phosphorylation and apoptosis in wild-type Jurkat acute lymphoblastic leukemia cells and cells overexpressing Bcl-2. However, Jurkat cells containing a Bcl-2 triple mutant, whereby the principal Bcl-2 phosphorylation sites are mutated to alanine, demonstrate resistance against Bcl-2 phosphorylation and apoptosis. PBOX-6 also induces the early and transient activation of c-Jun NH2-terminal kinase (JNK) in CEM cells. Inhibition of JNK activity prevents Bcl-2 phosphorylation and apoptosis, implicating JNK in the upstream signaling pathway leading to Bcl-2 phosphorylation. Collectively, these findings identify Bcl-2 phosphorylation and inactivation as a critical step in the apoptotic pathway induced by PBOX-6 and highlight its potential as an effective antileukemic agent.
Resumo:
In chloroform, [RuCl2(nbd)(py)(2)] (1) (nbd = norbornadiene; py = pyridine) reacts with 1,4-bis(diphenylphosphino)-1,2,3,4-tetramethyl-1,3-butadiene (1,2,3,4-Me-4-NUPHOS) to give the dimer [Ru2Cl3(eta(4)-1,2,3,4-Me-4-NUPHOS)(2)]Cl (2a), whereas, in THF [RuCl2(1,2,3,4-Me-4-NUPHOS)(PY)(2)] (3) is isolated as the sole product of reaction. Compound 2 exists as a 4:1 mixture of two noninterconverting isomers, the major with C, symmetry and the minor with either C, or C-2 symmetry. A single-crystal X-ray analysis of [Ru2Cl3 (eta(4)-1,2,3,4-Me-4-NUPHOS)(2)] [SbF6] (2b), the hexafluoroantimonate salt of 2a, revealed that the diphosphine coordinates in an unusual manner, as a eta(4)-six-electron donor, bonded through both P atoms and one of the double bonds of the butadiene tether. Compounds 2a and 3 react with 1,2-ethylenediamine (en) in THF to afford [RuCl2(1,2,3,4-Me-4-NUPHOS)(en)] (4), which rapidly dissociates a chloride ligand in chloroform to give [RuCl(eta(4)-1,2,3,4-Me-4-NUPHOS)(en)] [Cl] (5a). Complexes 4 and 5a cleanly and quantitatively interconvert in a solvent-dependent equilibrium, and in THF 5a readily adds chloride to displace the eta(2)-interaction and re-form 4. A single-crystal X-ray structure determination of [RuCl(eta(4)-1,2,3,4-Me-4-NUPHOS)(en)][ClO4] (5b) confirmed that the diphosphine coordinates in an eta(4)-manner as a facial six-electron donor with the eta(2)-coordinated double bond occupying the site trans to chloride. The eta(4)-bonding mode can be readily identified by the unusually high-field chemical shift associated with the phosphorus atom adjacent to the eta(2)-coordinated double bond. Complexes 2a, 2b, 4, and 5a form catalysts that are active for transfer hydrogenation of a range of ketones. In all cases, catalysts formed from precursors 2a and 2b are markedly more active than those formed from 4 and 5a.