6 resultados para 2-DIMENSIONAL ELECTRON-SYSTEM


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Heart failure (HF) prevention strategies require biomarkers that identify disease manifestation. Increases in B-type natriuretic peptide (BNP) correlate with increased risk of cardiovascular events and HF development. We hypothesize that coronary sinus serum from a high BNP hypertensive population reflects an active pathological process and can be used for biomarker exploration. Our aim was to discover differentially expressed disease-associated proteins that identify patients with ventricular dysfunction and HF.

METHODS AND RESULTS: Coronary sinus serum from 11 asymptomatic, hypertensive patients underwent quantitative differential protein expression analysis by 2-dimensional difference gel electrophoresis. Proteins were identified using mass spectrometry and then studied by enzyme-linked immunosorbent assay in sera from 40 asymptomatic, hypertensive patients and 105 patients across the spectrum of ventricular dysfunction (32 asymptomatic left ventricular diastolic dysfunction, 26 diastolic HF, and 47 systolic HF patients). Leucine-rich α2-glycoprotein (LRG) was consistently overexpressed in high BNP serum. LRG levels correlate significantly with BNP in hypertensive, asymptomatic left ventricular diastolic dysfunction, diastolic HF, and systolic HF patient groups (P≤0.05). LRG levels were able to identify HF independent of BNP. LRG correlates with coronary sinus serum levels of tumor necrosis factor-α (P=0.009) and interleukin-6 (P=0.021). LRG is expressed in myocardial tissue and correlates with transforming growth factor-βR1 (P<0.001) and α-smooth muscle actin (P=0.025) expression.

CONCLUSIONS: LRG was identified as a serum biomarker that accurately identifies patients with HF. Multivariable modeling confirmed that LRG is a stronger identifier of HF than BNP and this is independent of age, sex, creatinine, ischemia, β-blocker therapy, and BNP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gate-tunable two-dimensional (2D) materials-based quantum capacitors (QCs) and van der Waals heterostructures involve tuning transport or optoelectronic characteristics by the field effect. Recent studies have attributed the observed gate-tunable characteristics to the change of the Fermi level in the first 2D layer adjacent to the dielectrics, whereas the penetration of the field effect through the one-molecule-thick material is often ignored or oversimplified. Here, we present a multiscale theoretical approach that combines first-principles electronic structure calculations and the Poisson–Boltzmann equation methods to model penetration of the field effect through graphene in a metal–oxide–graphene–semiconductor (MOGS) QC, including quantifying the degree of “transparency” for graphene two-dimensional electron gas (2DEG) to an electric displacement field. We find that the space charge density in the semiconductor layer can be modulated by gating in a nonlinear manner, forming an accumulation or inversion layer at the semiconductor/graphene interface. The degree of transparency is determined by the combined effect of graphene quantum capacitance and the semiconductor capacitance, which allows us to predict the ranking for a variety of monolayer 2D materials according to their transparency to an electric displacement field as follows: graphene > silicene > germanene > WS2 > WTe2 > WSe2 > MoS2 > phosphorene > MoSe2 > MoTe2, when the majority carrier is electron. Our findings reveal a general picture of operation modes and design rules for the 2D-materials-based QCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrödinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case - in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:


Objective There is limited evidence regarding the quality of prescribing for children in primary care. Several prescribing criteria (indicators) have been developed to assess the appropriateness of prescribing in older and middle-aged adults but few are relevant to children. The objective of this study was to develop a set of prescribing indicators that can be applied to prescribing or dispensing data sets to determine the prevalence of potentially inappropriate prescribing in children (PIPc) in primary care settings.


Design Two-round modified Delphi consensus method.


Setting Irish and UK general practice.


Participants A project steering group consisting of academic and clinical general practitioners (GPs) and pharmacists was formed to develop a list of indicators from literature review and clinical expertise. 15 experts consisting of GPs, pharmacists and paediatricians from the Republic of Ireland and the UK formed the Delphi panel.


Results 47 indicators were reviewed by the project steering group and 16 were presented to the Delphi panel. In the first round of this exercise, consensus was achieved on nine of these indicators. Of the remaining seven indicators, two were removed following review of expert panel comments and discussion of the project steering group. The second round of the Delphi process focused on the remaining five indicators, which were amended based on first round feedback. Three indicators were accepted following the second round of the Delphi process and the remaining two indicators were removed. The final list consisted of 12 indicators categorised by respiratory system (n=6), gastrointestinal system (n=2), neurological system (n=2) and dermatological system (n=2).


Conclusions The PIPc indicators are a set of prescribing criteria developed for use in children in primary care in the absence of clinical information. The utility of these criteria will be tested in further studies using prescribing databases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While liquid exfoliation is a powerful technique to produce defect-free nanosheets in large quantities, its usefulness is limited by broad nanosheet thickness distributions and low monolayer contents. Here we demonstrate liquid processing techniques, based on iterative centrifugation cascades, which can be designed to achieve either highly efficient nanosheet size-selection and/ or monolayer enrichment. The resultant size-selected dispersions were used to establish quantitative metrics to determine monolayer volume fraction, as well as mean nanosheet size and thickness, from standard spectroscopic measurements. Such metrics allowed us to design and optimize centrifugation cascades to enrich liquid exfoliated WS2 dispersions up to monolayer contents of 75%. Monolayer-rich dispersions show relatively bright photoluminescence with narrow line widths (

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Three-dimensional ordered mesoporous (3DOM) CuCo2O4 materials have been synthesized via a hard template and used as bifunctional electrocatalysts for rechargeable Li-O2 batteries. The characterization of the catalyst by X-ray diffractometry and transmission electron microscopy confirms the formation of a single-phase, 3-dimensional, ordered mesoporous CuCo2O4 structure. The as-prepared CuCo2O4 nanoparticles possess a high specific surface area of 97.1 m2 g- 1 and a spinel crystalline structure. Cyclic voltammetry demonstrates that mesoporous CuCo2O4 catalyst enhances the kinetics for either oxygen reduction reaction (ORR) or oxygen evolution reaction (OER). The Li-O2 battery utilizing 3DOM CuCo2O4 shows a higher specific capacity of 7456 mAh g- 1 than that with pure Ketjen black (KB). Moreover, the CuCo2O4-based electrode enables much enhanced cyclability with a 610 mV smaller discharge-recharge voltage gap than that of the carbon-only cathode at a current rate of 100 mA g- 1. Such excellent catalytic performance of CuCo2O4 could be associated with its larger surface area and 3D ordered mesoporous structure. The excellent electrochemical performances coupled with its facile and cost-effective way will render the 3D mesoporous CuCo2O4 nanostructures as attractive electrode materials for promising application in Li-O2 batteries.